Шрифт:
Интервал:
Закладка:
Обычно под понятием «Вселенная» подразумевается все сущее, но часто вкладывают и другое содержание: Вселенная это область, наблюдаемая нашими приборами. Размеры этой области приблизительно равны 10**28 см. Но здесь неизбежен вопрос. Почем то, что мы наблюдаем, и есть все сущее? Не является ли подобное отождествление отражением атавистического инстинкта, который был свойственен человеку, впервые задавшему себе вопрос о природе его «мира»? Для первобытного человека этот мир отождествляется с областью его проживания. Затем, уже после возникновения зачатков цивилизации, под Вселенной понималась Солнечная система, окруженная хрустальной сферой с находящимися на ней звездами.
Лишь после создания Галилеем телескопа удалось показать, что сфера — лишь красивая фантазия и расстояния до звезд вовсе не одинаковы.
Только в начале этого столетия астрономы пришли к заключению о существовании гигантских островов звезд галактик.
И наконец, сравнительно недавно поняли, что галактики не самые большие объекты. Существуют скопления галактик (радиус 10**24 — 10**26 см), которые располагаются в области с размерами ~10**28 см. Соответствующий объем иногда (а астрономы обычно) называют Метагалактикой.
Из этого краткого исторического экскурса следует, что «все сущее» для человека обычно отражает уровень его знаний (или заблуждений), и поэтому тождество: Вселенная ≡ всему сущему ≡ наблюдаемому миру абсолютно необосновано. Поэтому необходимо далее условиться о терминологии. Мы будем называть наблюдаемую приборами область Метагалактикой. Под Вселенной мы будем понимать «все сущее» или, более конкретно, все, что можно представить себе на основе современных теоретических воззрений. Очевидно, что такая «теоретическая Вселенная» отнюдь не должна совпадать с наблюдаемым объемом. «Все сущее» отражает уровень знаний о природе; мы будем включать в это понятие не только наблюдаемую область пространства, но и все, что можно окинуть мысленным взором.
В дальнейшем мы приведем аргументы в пользу того, что такая Вселенная существенно превышает размеры Метагалактики, но, вероятно, и она — лишь отражение уровня наших знаний.
Отметим также, что модель Фридмана описывает не Вселенную в целом, а эволюцию Метагалактики. Мы будем использовать ее только для этой цели.
3. ЭВОЛЮЦИЯ МЕТАГАЛАКТИКИ КАК ОТРАЖЕНИЕ ЕЕ ГЕОМЕТРИИ
Как известно, любая математическая формулировка физической задачи содержит, кроме уравнений, описывающих эволюцию состояния во времени, также постулирование начальных и граничных условий. Физическая космология — наука об эволюции Метагалактики — не является исключением. Кроме использования уравнений ОТО, следует сформулировать начальные и граничные условия.
В наиболее четкой форме впервые подобная операция была сделана Фридманом, который предположил, что Метагалактика всегда была изотропной и однородной. иначе говоря, в любой момент своей эволюции в Метагалактике все направления равноправны (изотропия), а плотность материи одинакова. Прообразом такой Метагалактики является двумерная сфера, плотность вещества которой постоянна для любого момента времени. Здесь полезно отметить, что условия Фридмана неравноправны для пространства и времени.
В приведенном выше примере плотность вещества постоянна в пространстве (вдоль поверхности сферы) но не во времени. С течением времени вследствие расширения или сжатия плотность вещества изменяется.
Граничные и граничные условия в форме, предложенной фридманом, получили в дальнейшем название космологических постулатов.
Космологические постулаты, выдвинутые вначале из соображений простоты и критериев эстетики (симметрия), впоследствии неоднократно подвергались опытной проверке. Изложим кратко результаты этих проверок.
Изотропия Метагалактики прекрасно подтверждается в процессе исследования углового распределения реликтового излучения. Оно заполняет всю Метагалактику и поэтому может служить критерием ее симметрии. С высокой степенью точности никаких отклонений от изотропии Метагалактики до сих пор (на конец 1986 г.) обнаружено не было.
Хуже обстоит дело с постулатом однородности. Известно, что Метагалактика неоднородна. Существуют острова высокой концентрации вещества: звезды, галактики, скопления галактик. Однако наибольшие масштабы таких островов в 10**2 — 10**3 раз меньше размеров Метагалактики. Поэтому с такой точностью (10**-3 — 10**-2) можно полагать Метагалактику однородной. Мы вместе с другими космологами примем этот постулат однородности.
Основные космологические постулаты, на которых базировался Фридман, в высшей степени нетривиальны. Прежде всего их нужно согласовать с основным принципом теории относительности — принципом причинности, о чем речь пойдет дальше. Здесь нас будет интересовать другой аспект, связанный с космологическими постулатами. Оказывается, космологические постулаты — настолько сильные предположения, что из них следуют многие основные черты эволюции Метагалактики. Разумеется, такие силы существуют. Но если допустить справедливость космологических постулатов, то эти силы должны соответствовать закону всемирного тяготения или его обобщению — ОТО.[16]
Здесь мы не будем рассматривать полную аргументацию этого заключения, а лишь наметим его вывод.
Отметим прежде всего, что космологические постулаты чрезвычайно сильно сужают выбор геометрии Метагалактики. Наблюдаемая Метагалактика трехмерна, а трехмерное пространство может соответствовать космологическим постулатам лишь в трех случаях: если пространство характеризуется постоянной отрицательной кривизной (пространство Лобачевского), если пространство имеет нулевую кривизну (пространство Евклида), если пространство характеризуется постоянной положительной кривизной (трехмерная сфера).
Представить на бумаге все эти трехмерные фигуры невозможно. Однако хорошим наглядным аналогом трехмерной сферы является двумерная сфера. В дальнейшем мы и будем пользоваться для наглядности этим образом.
Выберем далее в нашем изотропном и однородном пространстве три точки A, B, и C, расположенные на малых расстояниях друг от друга.
Рассмотрим сначала две точки A и B. Вектор r|| является
AB единственным выделенным направлением в нашем изотропном пространстве. Поэтому скорость v|| движения этих двух точек
AB имеет только относительный характер, причем оба вектора коллинеарны. Иначе говоря, в пространствах постоянной кривизны осуществляется равенство
v|| = H(r,t) r|| (56) AB AB
где функция H(r,t), казалось бы, зависит от обоих аргументов r и t. Но далее, несколько модифицируя рассуждения Е.Милна, мы покажем, что в действительности вследствие симметрических свойств пространства функция H=H(t), т. е. она не зависит от вектора r. Для этого рассмотрим точки A, B, C. Поскольку мы предполагаем, что размеры области w малы, то ее можно локально описывать геометрией Евклида. Тогда справедливы правила векторного сложения:
r|| = r|| + r||, (57) AB AC CB
v|| = v|| + v||. (58) AB AC CB
Но очевидно, что равенства (57), (58) можно совместить с соотношением (56) лишь в случае, если H=H(t), т. е. зависит исключительно от времени.
≡=РИС. 6
В наших рассуждениях неявно предполагалось, что эволюция области w автономна; оставшаяся область V-w (V объем всей сферы) не влияет на динамику малой области w. Однако это предположение также является следствием основных космологических постулатов или симметрии пространств постоянной кривизны. Действительно, если выбрать малый объем в форме сферы, то, допуская, что силы, действующие между частицами, — силы притяжения, нетрудно понять (рис. 6), что любому элементу F большой сферы, действующему на микросферу, будет соответствовать элемент G, уравновешивающий это притяжение. Поскольку это рассуждение верно для любых пар элементов F и G, то это означает, что объем V-w не действует на объем w и, следовательно, эволюция последнего происходит самостоятельно и независимо от объема V. Поэтому, рассматривая эволюцию малого объема, мы моделируем эволюцию всего объема. Итак, в пределах объема w
v|| = H(t) r|| (59) AB AB
для любых пар точек A и B. Уравнение (59) можно переписать в форме
dr|| / dt = H(t) r|| (60) AB AB
Рассмотрим далее два случая.
1. Функция 1/H(t) разлагается в ряд Тейлора в окрестности t=0.
2. Функция 1/H(t)=const, т. е. не разлагается в ряд Тейлора.
Первый случай. Пусть 1/H(t)=a|+b|t+…(a|,b|
1 1 1 1 постоянные) Допуская, что b ≠ 0 и используя трансляционную инвариантность времени Вселенной, т. е. совершая замену a|+b|t — > b|t, получаем уравнение dr|| / dt = (br|| / t) 1 1 1 AB AB (b=1 / b=const), решением которого является функция
b r|| ~ t|. (61) AB
Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t|, отсчитываемого от