Шрифт:
Интервал:
Закладка:
Если бы я проснулся, проспав тысячу лет, моим первым вопросом было бы: доказали ли уже гипотезу Римана?
Давид Гильберт, математик, предложивший в 1900 году знаменитый список ИЗ 23 НЕРЕШЕННЫХ ПРОБЛЕМ
В 1890 году по предложению Шарля Эрмита (1822-1901), одного из главных французских знатоков теории чисел, Парижская академия учредила премию — Grand Prix des Sciences Mathematiques — за доказательство первой гипотезы Гаусса о простых числах. Работу по этой теме представил ученик Эрмита, Жак-Саломон Адамар (1865-1963). Хотя он не предложил полного доказательства, его идей было достаточно для того, чтобы стать лауреатом премии. В 1896 году Адамару удалось заполнить лакуны своего первого доказательства, и ему не нужно было опираться на гипотезу Римана о том, что у нетривиальных нулей действительная часть равна одной второй. Адамару достаточно было доказать, что ни у одного нетривиального нуля нет действительной части, большей единицы, и он смог это сделать.
Спустя век после того, как Гаусс открыл связь между простыми числами и логарифмической функцией, наконец появилось доказательство гипотезы Гаусса о простых числах. Поскольку речь шла уже не о гипотезе, с этого момента она стала называться теоремой Гаусса о простых числах. Безусловно, Адамар не смог бы достичь успеха в своей работе без вклада Римана. Адамару пришлось разделить славу с бельгийским математиком Шарлем ла Валле Пуссеном (1866-1962), который в том же году нашел другое доказательство того же результата.
Следовательно, теперь оставалось только доказать или опровергнуть вторую гипотезу Гаусса о простых числах. Но если доказательство гипотезы Гаусса было подвигом, то попытка оспорить его догадку требовала уже поистине нечеловеческих усилий. Однако Джон Идензор Литлвуд (1885-1977), английский математик первой половины XX века, взялся за работу. Литлвуд был выдающимся учеником Годфри Харолда Харди (1877-1947), он получил известность благодаря работам по теории чисел, неравенств и теории функций. В 1912 году Литлвуд открыл, что гипотеза Гаусса — это мираж, что существуют области, где истинное количество простых чисел недооценено. Он осуществил доказательство с помощью математических рассуждений, поскольку нет способа наглядно аргументировать, что Гаусс ошибся. И на самом деле до сегодняшнего дня никому не удалось дойти до области чисел, в которой гипотеза Гаусса оказалась бы ложной. Несколькими годами позже, в 1933 году, студент Литлвуда по имени Стенли Скьюз (1899-1988) установил, что только когда обнаружатся простые числа порядка 10101034, мы столкнемся с недооценкой количества простых чисел со стороны интегрального логарифма Гаусса. Но речь идет о настолько огромном числе, что мы должны проявить снисхождение к неточности, допущенной великим мастером.
ГЛАВА 5
Вклад в геометрию и физику
Гаусса с юности привлекала геометрия. Необычайная изобретательность привела его к поиску альтернатив евклидовой геометрии, которая в его время считалась единственно возможной. Также ученый внес большой вклад в дифференциальную и прикладную геометрию, особенно в геодезию. В области физики он сотрудничал с такими известными фигурами, как Вебер и Гумбольдт, и оставил свой след в таких разделах, как магнетизм и динамика.
Гаусс был человеком постоянных привычек, и он не хотел менять их по причинам, которые считал незначительными. Так, он всячески избегал длительных поездок, разве что речь шла о том, чтобы добыть материал для научной работы. Математик вполно комфортно чувствовал себя в Гёттингене или Брауншвейге, и его жизнь мирно протекала в этих городах и их окрестностях.
Как и другие великие ученые того времени, Гаусс получал многочисленные приглашения читать лекции из других городов и даже стран. Гёттинген был маленьким провинциальным городом, и многие считали, что главному математическому гению Германии следовало бы жить в более прогрессивном центре страны — Берлине. В 1822 году и в период 1824-1825 годов между образовательными властями Берлина и Гауссом шли серьезные переговоры о его переезде в университет столицы Пруссии. Эта территория недавно сбросила с себя французское владычество, и ее население вновь охватывал дух национального возрождения. Братья Гумбольдты — Александр (1769— 1859), ученый и исследователь, и Вильгельм (1767-1835), просвещенный политик, — пытались возбудить в австрийцах патриотическое чувство, поэтому для них было очень важно, чтобы Гаусс оказался в том месте, которое должно было стать истоком новой страны. С другой стороны, вторая супруга ученого, Минна (как и остальные члены ее семьи) подталкивала Гаусса переехать в Берлин, где было больше новых возможностей. В это же время скончался секретарь научного отдела Берлинской академии, и Гауссу сразу же предложили эту престижную и намного выше оплачиваемую должность, чем была у него в Гёттингене.
Берлин в это время был самым мощным центром государства, и казалось естественным, что лучшие немецкие ученые жили именно там. Гаусс среди этих ученых занимал почетное место, но сам он не испытывал никакой охоты к перемене мест, поэтому никогда лично не участвовал в переговорах об этом. Несмотря на усилия Карла Генриха Линденау (1755-1842), нового главы министерства, математик не проявлял никакого интереса к звучавшим заманчивым предложениям.
Гаусс был консерватором, ему было очень комфортно в спокойном городе, мало открытом переменам, происходившим в то время во всей Европе, поэтому переезжать он не торопился. Однако в конце 1825 года сложилась ситуация, когда казалось, что математика удалось уговорить. Гаусс даже проинформировал правительство Ганновера, на территории которого находится Гёттинген, что планирует переехать в Берлин и быть в подчинении государства Пруссия. Сразу же после этого изначально неуступчивый Ганновер увеличил ученому зарплату до того уровня, который ему предложили в Берлине. Также Гауссу предложили повысить его в должности и реконструировать обсерваторию, в которой протекала жизнь ученого. Естественно, Гаусс тут же ухватился за возможность остаться в Гёттингене. Это решение расстроило и даже разочаровало многих его друзей, участвовавших в патриотическом движении возрождения страны, таких как Ольберс, Фридрих Вильгельм Бессель (1784-1846) — математик и астроном, с которым Гаусс поддерживал переписку, и, конечно, Линденау. Для них Берлин был единственным местом, достойным Гаусса. Они считали, что государство Пруссия — это зачаток объединенной Германии. Впрочем, несмотря на то что ученый остался в маленьком Гёттингене, его реальное влияние на научную жизнь было ничуть не меньше, чем если бы он отправился в Берлин, чтобы начать в Пруссии новую карьеру. Гаусс обладал огромным личным авторитетом, его публикации пользовались широкой известностью и, конечно же, сыграли свою роль и в развитии научной деятельности, и в технологическом и экономическом прогрессе его страны в первой трети XIX века.
Самый известный портрет Гаусса, сделанный в 1840 году датским художником Христианом Альбрехтом Йенсеном (1792-1870), когда немецкому гению было 63 года.
Беременности и роды, которые следовали друг за другом три раза с1811 по 1816 годы, подорвали здоровье Минны Гаусс, женщина больше не могла активно заниматься домом и отказалась от общественной деятельности, так что она не слишком настаивала на переезде в Берлин, хотя и не была против.
Совместная жизнь Гаусса с Минной протекала довольно мирно, чего нельзя сказать о его отношениях с детьми, особенно от второго брака. Исключением стала только самая младшая дочь — Тереза, которая заботилась о Гауссе до его смерти. Старший сын ученого от первого брака, Иосиф, также поддерживал с отцом теплые отношения и даже помогал ему в некоторых работах. Но об этом мы поговорим позже. Будучи военным, Иосиф не очень часто общался с отцом, но Гаусс получал искреннее удовольствие от этого общения и гордился профессиональными успехами сына, о которых тот ему писал. Отношения с двумя сыновьями от Минны были ужасными, оба они, Ойген и Вильгельм, уехали в Северную Америку, спасаясь от семейных конфликтов. Ойген всегда упрекал Гаусса за то, что тот потребовал, чтобы сын занимался юриспруденцией, к которой сам Ойген не испытывал никакого интереса.
Несмотря на то что Гаусс пользовался огромным уважением, из-за своего замкнутого характера он стремился заниматься только своими исследованиями и старался остаться незамеченным, хотя иногда мог бы воспользоваться своим авторитетом, чтобы помочь друзьям. Показательно в этом смысле известное дело Гёттингенской семерки 1837 года. В этом году умер король Англии Вильгельм IV, его сменила королева Виктория, однако салический закон, действовавший в государстве Ганновер, запрещал женщине наследовать власть, хотя в тот момент государство входило в состав английской короны. Чтобы спасти положение, было заключено соглашение, и в Ганновере стал править дядя Виктории, Эрнст Август, герцог Камберлендский. Через год новый король отменил Конституцию и другие свободы, что вызвало реакцию со стороны семи профессоров; в их число входили и Вильгельм Вебер, с которым Гаусс уже несколько лет сотрудничал в области изучения физики, и Георг Генрих Август Эвальд (1803-1875), ориенталист, зять Гаусса и его большой помощник. Эти семь преподавателей подписали формальный протест, выступив против абсолютистских действий власти, совершенно не соответствующих духу того времени. Король Эрнст Август, презрев ценных ученых, высокомерно заявил, что может «найти новых преподавателей так же легко, как и балерин балета». Вследствие этого семь подписавшихся потеряли работу и были уволены из университета. Официально Гаусс не выступил в пользу подписавшихся, хотя похоже, что он действовал приватно, встретившись с королем и предложив ему соглашение для восстановления ученых в должности. Однако договор предполагал настолько унизительные и неприемлемые условия этого восстановления для Вебера и Эвальда, что те не пошли на уступки и были вынуждены уехать. Для Гаусса отъезд Вебера означал конец интенсивного сотрудничества, хотя до 1840 года у них были совместные проекты — «Университетский журнал» и «Атлас геомагнетизма».
- Открытия и гипотезы, 2015 №02 - Журнал «Открытия и гипотезы» - Научпоп
- Открытия и гипотезы, 2014 №12 - Журнал «Открытия и гипотезы» - Научпоп
- Открытия и гипотезы, 2005 №11 - Журнал «Открытия и гипотезы» - Научпоп
- Уравнение Бога. В поисках теории всего - Каку Митио - Научпоп
- Биология для тех, кто хочет понять и простить самку богомола - Шляхов Андрей - Научпоп
- Революция в микромире. Планк. Квантовая теория - Alberto Izquierdo - Научпоп
- Ледяные лишаи - Евгений Гернет - Научпоп
- Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез - Miguel Sabadell - Научпоп
- Квадратура круга - Яков Перельман - Научпоп
- Чудесная жизнь клеток: как мы живем и почему мы умираем - Льюис Уолперт - Научпоп