Шрифт:
Интервал:
Закладка:
В большинстве формул коэффициент месяца М дается в виде таблицы с готовыми значениями — числами от 0 до 6. В некоторых формулах (Перевощиков, Дроздов и Перельман) вместо готовых значений коэффициента месяца М используется число дней от начала года R. Это усложняет вычисления. Также усложняет вычисления примененное Целлером и Каменьщиковым определение коэффициента месяца М в зависимости от порядкового номера месяца в году m (при этом январь и февраль високосного года считаются 13-м и 14-м месяцами предыдущего года). Формулы отличаются еще и тем, что при вычислении коэффициента года в одних вводится полный номер года J, а в других его порядковый номер в столетий Д, что упрощает вычисления.
В табл. 18 приведены значения коэффициента месяца М для формул, представленных в табл. 17. Проверка показала, что все формулы дают правильные ответы для всех дат за исключением простых (невисокосных) вековых лет по новому стилю, — т. е. годов 1700, 1800, 1900, 2100, 2200, 2300 и т. д. Для этих годов необходимо уменьшать на единицу коэффициент года Г (см. формулу (7)).
§ 25. Постоянные табель-календари. Табель-календарь И. Я. Голуба
Определение дня недели значительно упрощается с помощью постоянных табель-календарей. Если подсчитать для каждого года и месяца заданного столетия величины Е, представляющие остатки от деления на 7 (т. е. числа от 0 до 6) суммы коэффициентов месяца М, года Г и века В,
Е = |(M + Г + B)/7 |,
и свести их в таблицу, то определение дня недели выразится формулой
d = |(К + Е)/7 |,
где К — календарное число месяца.
Каждый замечал, что распределение дней недели по числам года повторяется. Эта повторяемость имеет определенную закономерность. Так, если номер года в столетии при делении на 4 дает в остатке 1 (год, следующий за високосным), то следующий год с тем же распределением дней недели повторится через 6 лет, если же остаток 2 или 3, то следующий такой же год будет через 11 лет. Так, для 1985 г. (85 = 21 × 4 + 1) это будет год 1991, а для годов 1986 и 1987 (соответственно 21 × 4 + 2 и 21 × 4 + 3) — годы 1997 и 1998. Високосные годы с одинаковым распределением дней педели повторяются только через 28 лет. В юлианском календаре ровно через 100 лет даты отступают по дням недели на одну позицию назад, и полная повторяемость дней педели происходит через 700 лет. В григорианском календаре столетия начинаются только с воскресенья, субботы, четверга и вторника, и здесь полный цикл завершается по прошествии 400 лет.
В книге А. В. Буткевича и М. С. Зеликсона (см. список литературы) представлена обширная коллекция из 60 постоянных табель-календарей без их математического обоснования и подробного анализа. Рассмотрим их отличия. Часть из них рассчитана на старый стиль (юлианский календарь), а часть на новый стиль (григорианский календарь). Следует отметить, что табель-календарь на XX в. по новому стилю совпадает с календарем для XIX в. по старому стилю.
Другое отличие состоит в том, что в одних календарях для определения порядкового номера дня недели приходится находить остатки от деления на 7 суммы К + Е, а в других день недели определяется по таблице готовых значений этой суммы. Сумма К + Е имеет значения от 1 до 37, при этом значениям 1, 8, 15, 22, 29 и 36 соответствует один день недели, значениям 2, 9, 16, 23, 30, 37 — следующий и т. д. Такая таблица дается в ряде вечных календарей.
Еще одно отличие заключается в том, что в одних календарях приводятся 12 столбцов значений Е, а а других 7. Это следует из таблиц 11, 13, 15, в которых можно объединить также январь простого года и октябрь, январь високосного года и апрель, июль и т. д.
Остается определить, па какие сроки целесообразно издавать постоянные табель-календари. В книге А. В. Буткевича и М. С. Зеликсона такие календари подразделяются на краткосрочные со сроком действия от одного до 25 лет, среднесрочные (от 34 до 200 лет) и долгосрочные (200–3000 лет). По нашему мнению, наименьший срок, на который нужно рассчитывать постоянные табель-календари, — это столетие. Предлагаем постоянный табель-календарь на XX в. по новому стилю (табл. 19), состоящий из частей А и Б. Он пригоден также для XIX в. по старому стилю. Если к нему добавить таблицу поправок (табл. 20), то он будет пригоден для 1–2000 гг. по старому стилю и для 1501–2301 гг. по новому стилю. Для определения дня недели нужно взять значение Е на пересечении номера года в столетии с колонкой месяца для високосного или невисокосного года в части А и прибавить к нему число месяца К. По полученной сумме в части Б найдем день недели.
Пример 1. Определить, в какой день недели было 9 мая 1945 г. В части А слева находим число 45. Справа против него в колонке «май» находим число 1, которое прибавляем к календарному числу: 9 + 1 = 10. Эту сумму находим во втором слева вертикальном столбце части Б, и против нее в последнем крайнем столбце читаем «ср», т. е. «среда».
Пример 2. Определить, в какой день недели было 9 января 1905 г. (старый стиль). По аналогии с первым примером слева в части А находим 05 (левый крайний столбец) и против него в колонке «янв.» читаем «6», а так как это событие задано календарной датой старого стиля, вычитаем единицу, т. е. 9 + 6–1 = 14. Эту сумму (14) находим в части Б (второй слева столбец) и против 14 в правом крайнем столбце находим ответ «вс», т. е. воскресенье («Кровавое воскресенье»).
Пример 3. Определить, в какой день недели будет 7 ноября в 2017 г. — столетие Великой Октябрьской социалистической революции. Найдя в части А число 17 (две последние цифры номера заданного года), против него в вертикальном столбце «нояб.» читаем цифру 3.2017 г. относится к XXI в., поэтому вычитаем единицу. Получим 7 + 3–1 = 9, и против этого числа в части Б (вторая колонка) в правом крайнем столбце читаем «вт». Следовательно, 100-летие Великого Октября будет во вторник.
Пример 4. Определить, какой будет день недели 1 мая 2000 г., являющегося високосным. В части А находим две последние цифры века-в данном случае «00», и против них в колонке «май» читаем «0». Следовательно, 1 + 0 = 1. В первой строке части Б находим «пн», т. е. понедельник.
ПРИЛОЖЕНИЯ
1. Число выходных и рабочих дней в СССР в 1988–2000 гг.
(в скобках со знаком «плюс» указано число праздничных дней, не совпадающих в данном году с субботой и воскресеньем)
СПИСОК ЛИТЕРАТУРЫ
Ахслис Элизабет. Мировой календарь: Пер. с англ. А. В. Буткевича и Ю. Г. Переля//Природа. — 1963. —№ 3. — С. 46–48.
Бакулин П. И., Блинов Н. С. Служба точного времени. — М.: Наука, 1968, 320 с.
Бережков Н. Г. Общая формула определения дня недели по числу месяца в январских годах нашей эры и в сентябрьских, мартовских и ультрамартовских годах от сотворения мира//Проблемы источниковедения. — 1958. — Вып. 6.
Беруни А. Избранные произведения: Т. I. — Ташкент, 1957.
Блинов Н. С. Атомное время//3емля и Вселенная. — 1966.— № 5. — С. 43–47.
Бойцов В. За стрелками часов//Паука и жизнь. — 1981.— № 3. — С. 35–37.
Буткевич А. В., Ганыиин В. Н., Хренов Л. С. Время и календарь/Под общ. ред. Л. С. Хренова. — М.: Высшая школа, 1961, 122 с.
Буткевич А. В., Зеликсон М. С. Вечные календари. — 2-е изд., перераб. и доп. при редакционном участии И. А. Клими-шина. —М.: Наука, 1984, 207 с.
Володомонов Н. В. Календарь: Прошлое, настоящее, будущее. — 2-е изд., перераб. и доп. — М.: Наука, 1987, 80 с.
Голуб И. Я., Хренов Л. С. Постоянный календарь//Проблемы наблюдательной и теоретической астрономии. ВАГО при АН СССР, ГАО АН СССР и Ин-т теор. астрономии. — М.; Л., 1977.
Дадонова А. А. Универсальные астрономические часы//3емля и Вселенная. — 1981. —№ 3. — С. 54–55.
Дроздов С. Как по данному году, месяцу и числу найти день недели//Краткий астрономический календарь на 1955 г. — Киев. — 1954.— С. 85.
Завельский Ф. С. Время и его измерение. — 5-е изд., испр. — М.: Наука, 1987.
Зеликопич Э. Вечный табель-календарь старого и нового стиля//Знание — сила. — 1953. — № 8.— С. 41.
Зеликсон М. Сколько лет календарю//Паука и религия. — I960. —№ 10. —С. 41–43.
Ивановский М. Вчера, сегодня, зпптра. —М.: Госдетнздат, 1958, 216 с.
Идельсон П. История календаря. — М.: Научное издательство, 1925, 170 с.
Ильин В. Г., Сажан И. В. Новый Государственный эталон времени н частоты СССР//Природа. — 1977. — № 8. — С. 16–27.
Климишии И. А. Календарь и хронология. — 2-е изд., перераб. и доп. — М.: Наука, 1985, 320 с.
Коногорсшй И. П. Формула для определения дня недели любой календарной даты нашей эры//Опыт проведения внеклассной работы по математике в средней школе, — М, 1955. — С. 200.
- Время и календарь - Иосиф Полак - Прочая научная литература
- 100 великих заблуждений - Станислав Зигуненко - Прочая научная литература
- Астрологический календарь на 2018 год - Галина Гайдук - Прочая научная литература
- Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман - Прочая научная литература
- Наблюдая за человеком: Фундаментальное исследование всех невербальных сигналов - Десмонд Моррис - Прочая научная литература
- Доктор, который научился лечить все. Беседы о сверхновой медицине - Александр Никонов - Прочая научная литература
- 49 загадок окружающего нас мира. Удивительные открытия и потрясающие теории, которые меняют представления об окружающей действительности - Григорий Жадько - Прочая научная литература
- Путеводный нейрон. Как наш мозг решает пространственные задачи - Майкл Бонд - Биология / Прочая научная литература
- Любителям фантастики — ошибки в книгах и фильмах - Василий Купцов - Прочая научная литература
- Очерки разных лет. О науке и жизни - Иосиф Атабеков - Прочая научная литература