Рейтинговые книги
Читем онлайн Философия Науки. Хрестоматия - Авторов Коллектив

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 185 186 187 188 189 190 191 192 193 ... 300

Только к концу XIX в. сложился стандарт требований к логической строгости, остающийся и до настоящего времени господствующим в практической работе математиков над развитием отдельных математических теорий. Этот стандарт основан на теоретико-множественной концепции строения любой математической теории. С этой точки зрения любая математическая теория имеет дело с одним или несколькими множествами объектов, связанных между собой некоторыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в ее основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при ее развитии не используется никаких конкретных, не упомянутых в аксиомах свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.

Из указанных требований, в частности, вытекает, что математическая теория, применимая к какой-либо системе объектов, применима автоматачески и к любой «изоморфной» системе. Заметим по этому поводу, что кажущееся иногда весьма абстрактным понятие изоморфизма является просто математическим выражением идеи «моделирования» физических явлений из какой-нибудь одной области (например, тепловых) физическими явлениями иной природы (например, электрическими).

Изложенная концепция строения математической теории является по существу лишь некоторой конкретизацией определения математики как науки о количественных отношениях в разъясненном выше широком понимании термина «количественные отношения». «Безразличие» количественных отношений к конкретной природе тех предметов, которые они связывают, находит здесь свое выражение в возможности свободно переходить от одной системы объектов к любой, ей изоморфной.

Теоретико-множественная концепция не только доставила основной в настоящее время стандарт математической «строгости», но и позволила в значительной мере разобраться в разнообразии возможных математических теорий и их систематизировать. Так, чистая алгебра определяется как наука о системах объектов, в которых задано конечное число операций, применимых (каждая) к определенному конечному числу объектов системы и производящих из них новый объект системы (например, в случае алгебраического поля — две операции (сложение и умножение) над двумя элементами каждая). Этим чистая алгебра отделяется от анализа и геометрии (в собственном смысле слова, предполагающем известную «непрерывность» изучаемых пространств), которые существенно требуют введения «предельных» отношений, связывающих бесконечное число объектов.

Естественно, что аксиоматическое изложение какой-либо специальной математической теории (например, теории вероятностей) не начинают на пустом месте, а пользуются понятием ранее построенных теорий (например, понятиями натурального или действительного числа). В результате этого безукоризненное проведение аксиоматического изложения математических теорий перестало быть чем-либо особенно обременительным и все больше входит во всеобщее употребление. При изучении таких сложных и в то же время общих образований, как, например, непрерывные группы, различные виды линейных пространств, этот способ изложения и исследования необходим для достижения полной ясности и избежания ошибок.

Во всех конкретных, хотя бы и весьма общих, математических теориях (от теории действительных чисел до общей теории топологических пространств и т.п.) точка зрения теории множеств себя вполне оправдала в том смысле, что благодаря ее проведению на конкретных математических исследованиях практически исчезли случаи длительных неясностей и разногласий по вопросу о корректности определений и достаточной убедительности доказательств отдельных теорем. Возникшие в самой теории множеств неясности и даже прямые противоречия связаны главным образом с теми ее областями, где понятию бесконечного множества придается общность, излишняя для каких-либо приложений. С принципиальной стороны, однако, следует иметь в виду, что теоретико-множественное построение всех основных математических теорий, начиная с арифметики натуральных и действительных чисел требует обращения к теории именно бесконечных множеств, а их теория сама требует логического обоснования, так как абстракция, приводящая к понятию бесконечного множества, законна и осмысленна лишь при определенных условиях, которые еще далеко не выяснены. (С. 65-67)

Все те результаты, которые могут быть получены в пределах одной дедуктивной теории, могут быть также получены вычислением, производимым по данным раз навсегда правилам. Если для решения некоторого класса проблем дается строго определенный рецепт их вычислительного решения, то говорят о математическом алгоритме. С самого создания достаточно разработанной системы математических знаков проблемы построения достаточно общих и в то же время кратких алгоритмов занимали большое место в истории математики. Но только в последние десятилетия в результате развития математической логики начала создаваться общая теория алгоритмов и «алгоритмической разрешимости» математических проблем. Практические перспективы этих теорий, по-видимому, весьма велики, особенно в связи с современным развитием вычислительной техники, позволяющей заменить сложные математические алгоритмы работой машин. Отмеченной выше ограниченности возможностей любой фиксированной дедуктивной теории в теории алгоритмов соответствуют теоремы о невозможности «универсальных» алгоритмов для достаточно общих классов математических проблем. Эти теоремы дали философии математики наиболее интересную и острую конкретизацию общего положения о том, что живое мышление принципиально отличается от работы любого вида вычисляющих автоматов.

Теория множеств, успешное построение большинства математических теорий на основе теоретикомножественной аксиоматики и успехи математической логики (с входящей в нее теорией алгоритмов) являются весьма важными предпосылками для разрешения многих философских проблем современной математики. Благодаря теоретико-множественной переработке всех отделов математики, решение проблем, связанных с понятием бесконечности в математике, сведено к обоснованию и критическому выяснению содержания понятия бесконечного множества. Теоретико-множественная аксиоматика, как уже было указано, дает средства для достаточно общей трактовки вопроса о количественном характере изучаемых математических отношений. Она же позволяет с единой точки зрения рассмотреть строение специальных математических теорий, предметное содержание которых закрепляется при помощи соответствующей системы аксиом, и, таким образом, до известной степени осветить как вопрос об отношении математической теории к действительности, так и вопрос о своеобразии математического метода исследования. <...> (С. 68-69).

ДЖОН АРЧИБАЛЬД УИЛЕР. (Род. 1911)

Дж. Уилер (Wheeler) — известный американский физик-теоретик, профессор Принстонского, а затем Техасского университетов. Спектр его научных интересов изначально был очень широк: его работы посвящены проблемам ядерной физики, специальной и общей теории относительности, единой теории поля, теории гравитации и астрофизики. В частности, независимо от В. Гейзенберга он ввел (1937) матрицу рассеяния для описания взаимодействий (5-матрицу), а вместе с Н. Бором разработал (1939) теорию деления атомного ядра.

В последние десятилетия Уилер проводил исследования преимущественно в области гравитации и релятивистской астрофизики. Он является одним из создателей геометродинамики, изучающей структуру пространства-времени в очень малых масштабах. Ему принадлежит инициатива в интерпретации геометродинамических представлений как имманентных идеям А. Эйнштейна в общей теории относительности: именно этот аспект содержится в приведенных ниже фрагментах одной из работ Уилера. Собственные результаты в исследовательской деятельности Уилера характеризуются разработкой так называемых геометродинамических моделей массы и заряда — модель массы «без массы» (геоны Уилера) и модель заряда «без заряда» («ручки» Уилера). Уилер участвовал в разработке теории суперпространства и теории нейтронных звезд, в исследованиях квантования гравитации, гравитационного коллапса, структуры физической материи чрезвычайно большой плотности и температуры.

В.Н. Князев

Фрагменты теста даны по работе:

1 ... 185 186 187 188 189 190 191 192 193 ... 300
На этой странице вы можете бесплатно читать книгу Философия Науки. Хрестоматия - Авторов Коллектив бесплатно.
Похожие на Философия Науки. Хрестоматия - Авторов Коллектив книги

Оставить комментарий