Шрифт:
Интервал:
Закладка:
(1) и её основание, и её следствие истинны;
(2) основание ложно, а следствие истинно;
(3) и основание, и следствие ложны.
Только в четвёртом случае, когда основание истинно, а следствие ложно, вся импликация ложна.
Будем обозначать импликацию символом →. Таблица истинности для импликации приводится.
Смысл импликации, как одной из логических связок, полностью определён этой таблицей, и ничего другого импликация не подразумевает.
Импликация, в частности, не предполагает, что высказывания A и B как-то связаны между собой по содержанию. В случае истинности B высказывание «если A, то B» истинно независимо от того, является A истинным или ложным и связано оно по смыслу с B или нет. Истинными считаются, например, высказывания: «Если на Солнце есть жизнь, то дважды два равно четырём», «Если Волга – озеро, то Токио – большой город» и т.п. Условное высказывание истинно также тогда, когда A ложно, и при этом опять-таки безразлично, истинно B или нет и связано оно по содержанию с A или нет. К истинным относятся, к примеру, высказывания: «Если Солнце – куб, то Земля – треугольник», «Если дважды два равно пяти, то Токио маленький город» и т.п. В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и ещё в меньшей степени как истинные.
Очевидно, что хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты «логического поведения» условного высказывания, но вместе с тем не является достаточно адекватным его описанием.
В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении, наряду с ним, другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.
С импликацией тесно связана эквивалентность, называемая иногда «двойной импликацией».
Эквивалентность – сложное высказывание «A, если и только если B», образованное из высказываний A и B и разлагающееся на две импликации: «если A, то B» и «если B, то A». Например: «Треугольник является равносторонним, если и только если он является равноугольным». Термином «эквивалентность» обозначается и связка «…, если и только если …», с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо «…, если и только если …» для этой цели могут использоваться «… в том и только том случае, когда…», «… тогда и только тогда, когда…» и т.п.
Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющие её высказывания имеют одно и то же истинностное значение, т.е. когда они оба истинны или оба ложны. Соответственно, эквивалентность является ложной, когда одно из входящих в неё высказываний истинно, а другое ложно.
Обозначим эквивалентность символом ↔, формула A ↔ B может быть прочитана так: «A, если и только если B». Таблица истинности для эквивалентности приводится.
С использованием введённой логической символики связь эквивалентности и импликации можно представить так: «A ↔ B» означает «(А → В) & (В → А)».
Например: высказывание «Ромб является квадратом, если и только если все углы ромба прямые» означает «Если ромб есть квадрат, то все углы ромба прямые, и если все углы ромба прямые, то ромб есть квадрат».
Эквивалентность является отношением типа равенства. Как и всякое такое отношение, эквивалентность высказываний является рефлексивной (всякое высказывание эквивалентно самому себе), симметричной (если одно высказывание эквивалентно другому, то второе эквивалентно первому) и транзитивной (если одно высказывание эквивалентно другому, а другое – третьему, то первое высказывание эквивалентно третьему).
В следующей таблице перечислены все шесть связок, которые были введены ранее:
Следующие примеры показывают употребление данных связок.
Эти таблицы показывают, что формулы (А → A), (A v ~ A), ~ (A & ~ А), ((А → В) & А) → B и ((A → В) & ~ В) → ~ A принимают значение истинно при любых значениях входящих в них переменных. Такие формулы называются общезначимыми, или тождественно истинными, или тавтологиями. Более подробно об общезначимых формулах, представляющих законы логики, говорится в главе, посвящённой этим законам.
3. Описательные и оценочные высказывания
И в обычном языке, и в логике употребляется несколько видов высказываний. До сих пор речь шла только об одном из них – об описательных высказываниях. Главной функцией описательного высказывания является описание действительности. Если высказывание описывает реальное положение дел, оно считается истинным, если не соответствует реальности – ложным. Обычно само понятие описательного высказывания определяют в терминах истины и лжи: высказывание есть повествовательное предложение, рассматриваемое вместе с его содержанием (смыслом) как истинное или ложное.
Описательное высказывание чаще всего имеет грамматическую форму повествовательного предложения: «Плутоний – химический элемент», «У ромба четыре стороны» и т.п. Однако описание может выражаться и предложениями других видов; даже вопросительное предложение способно в подходящем контексте выражать описание. Описательное высказывание отличается от высказываний иных видов не грамматической формой, а прежде всего своей основной функцией и особенностями составляющих его структурных «частей».
Описательное отношение высказывания к действительности иногда отмечается словами «истинно», «действительно» и т.п., но чаще всего никак не обозначается. Сказать «Трава зелёная» все равно, что сказать «Истинно, что трава зелёная» или «Трава действительно зелёная».
Всякое описание предполагает следующие четыре части, или компонента: субъект – отдельное лицо или сообщество, дающее описание; предмет – описываемая ситуация; основание – точка зрения, с которой производится описание, и характер – указание истинности или ложности предлагаемого описания. Не все эти части находят явное выражение в каждом описательном высказывании. Характер высказывания, как правило, не указывается: оборот «истинно, что…» опускается, вместо высказываний с оборотом «ложно, что…» используются отрицательные высказывания. Предполагается, что основания всех описательных высказываний совпадают: если оцениваться объекты могут с разных позиций, то описываются они всегда с одной и той же точки зрения. Предполагается также, что какому бы субъекту ни принадлежало описание, оно остаётся одним и тем же. Отождествление оснований и субъектов описаний составляет основное содержание идеи интерсубъективности знания – независимости его употребления и понимания от лиц и обстоятельств. Требование совпадения субъектов и оснований описаний предписывает исключать упоминание этих двух частей из состава описания. Вместо того, чтобы говорить «Для каждого человека с любой точки зрения истинно, что Земля вращается вокруг Солнца», мы говорим «Земля вращается вокруг Солнца».
К описательным высказываниям близки так называемые неопределённые высказывания типа: «Этот дом голубой», «Здесь растёт дерево», «Завтра будет солнечное затмение» и т.п. Такие высказывания, взятые сами по себе, не являются ни истинными, ни ложными, они приобретают истинностное значение только в конкретной ситуации, в частности, в результате указания пространственно-временных координат.
Многие высказывания, относимые обычно к несомненно описательным, являются на самом деле неопределёнными. Скажем, высказывание «Лондон больше Рима» истинно, но истинно именно теперь: было время, когда Рим был больше Лондона и, возможно, в будущем эта ситуация повторится.
Оценочным высказыванием называется высказывание, устанавливающее абсолютную или сравнительную ценность какого-то объекта, дающее ему оценку. Например: «Хорошо иметь много друзей», «Безразлично, как мы называем свою собаку», «Плохо не выполнять обещания», «Лучше обманывать дальних, чем близких», «Пропускать занятия хуже, чем опаздывать на них» и т.п.
Способы выражения в языке оценочных высказываний чрезвычайно разнообразны. Абсолютные оценки выражаются чаще всего предложениями с оценочными словами «хорошо», «плохо», «безразлично». Вместо этих слов могут использоваться «позитивно ценно», «негативно ценно», «добро», «зло» и т.п. Сравнительные оценки формулируются в предложениях с оценочными словами «лучше», «хуже», «равноценно», «предпочитается» и т.п. В языковом представлении оценок важную роль играет контекст, в котором они формулируются. Можно выделять обычные, или стандартные, формулировки оценочного высказывания, но, в принципе, предложение едва ли не любой грамматической формы способно в соответствующем контексте выражать оценку. Попытка отграничить оценочное высказывание от других видов высказываний, опирающаяся на чисто грамматические основания, не ведёт к успеху.
- Мышление. Системное исследование - Андрей Курпатов - Прочая научная литература
- Логика. Элементарный курс. Учебное пособие - Александр Ивин - Прочая научная литература
- На 100 лет вперед. Искусство долгосрочного мышления, или Как человечество разучилось думать о будущем - Роман Кржнарик - Прочая научная литература / Обществознание / Публицистика
- Машина мышления. Заставь себя думать - Андрей Владимирович Курпатов - Биология / Прочая научная литература / Психология
- Щупальца длиннее ночи - Такер Юджин - Прочая научная литература
- Чудо или научная загадка? - Рудольф Баландин - Прочая научная литература
- Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио - Прочая научная литература
- Боги Атлантиды - Колин Уилсон - Прочая научная литература
- Политическая биография Сталина - Николай Капченко - Прочая научная литература
- Антикитерский механизм: Самое загадочное изобретение Античности - Джо Мерчант - Прочая научная литература