Рейтинговые книги
Читем онлайн Суперсила - Девис Пол

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 77

Что же определяет конкретную параболическую траекторию, по которой летит данный бейсбольный мяч? Именно в выборе траектории и проявляется искусство бейсболиста, так как ее форма зависит от того, с какой скоростью и под каким углом к горизонту брошен мяч. Эти два дополнительных параметра, называемые “начальными условиями”, и следует задать для однозначного выбора траектории.

Физический закон оказался бы бесполезным, если бы был настолько жестким, что допускал единственный вариант поведения. Это был бы не истинный закон, а всего лишь описание мира. Все богатство и сложность явлений реального мира может основываться на простых законах, поскольку существует бесконечное множество начальных условий, создающих разнообразие. Физические законы требуют, чтобы орбиты всех планет Солнечной системы были эллиптическими, но точная их форма и отношение длин большой и малой полуосей каждого эллипса из этих законов не следуют. Они определяются начальными условиями, которые нам неизвестны, так как зависят в первую очередь от условий формирования Солнечной системы. Те же законы описывают гиперболические траектории комет и даже сложные траектории космических кораблей. Таким образом, открытые Ньютоном простые математические законы служат основой поистине множества сложных явлений.

Красота как путеводная нить к истине

Красота – понятие туманное, однако нет сомнений в том, что именно она служит источником вдохновения ученых. В некоторых случаях, когда дальнейший путь не ясен, именно математическая красота и изящество ведут ученых к истине. Физик интуитивно чувствует, что природа предпочитает красивые “решения” некрасивым. До сих пор это убеждение, несмотря на его субъективизм, служило надежным и могущественным спутником физиков. Однажды в беседе с Эйнштейном Гейзенберг заметил:

Если природа приводит нас к математическим выражениям необычайно простым и красивым... которые ранее не встречались, то мы невольно воспринимали их как “истинные” и считаем, что они открывают то или иное свойство природы.

Затем Гейзенберг пустился в рассуждения о “почти пугающей простоте и цельности соотношений, которые природа внезапно открывает перед нами”, – эта тема волновала многих его современников. Поль Дирак, пойдя еще дальше, провозгласил: “Красота уравнений важнее, чем их согласие с экспериментом”. Дирак имел в виду, что игра творческого воображения может привести к созданию теории, столь привлекательной, что физики отринут всякие сомнения в ее истинности, прежде чем теория будет подвергнута экспериментальной проверке, и не отвергнут ее даже столкнувшись с казалось бы, противоречащими ей экспериментальными данными.

Ту же мысль проводит и популяризатор науки Ричард Моррис в своей замечательной книге “Разоблачение Вселенной”:

Между наукой и искусством существует множество параллелей, которые сразу же бросаются в глаза. Подобно художникам, каждый ученый имеет свой неповторимый стиль. Представления ученых о том, какой должна быть хорошая научная теория, удивительно схожи с аналогичными воззрениями представителей искусства... Корректней считается та теория, которая предположительно допускает экспериментальную проверку. Тем не менее в некоторых случаях научная интуиция способна предугадать правильность теории еще до проведения ее экспериментальной проверки. Эйнштейн (как и многие другие физики) верил в истинность специальной теории относительности, даже когда, эксперименты, казалось бы, противоречили ей.

Моррис рассказывает, как Эйнштейн реагировал на известие о том, что решающее предсказание его общей теории относительности получило подтверждение при астрономических наблюдениях. Эйнштейн отнесся к сообщению совершенно безучастно, и когда его спросили, как бы он отреагировал, если бы результаты противоречили его теории, ответил: “Мне было бы жалко Господа Бога, ведь теория-то правильная”.

Объяснить людям, далеким от математики, что такое математическое изящество, трудно, но я все-таки попытаюсь. Взгляните на кривую, изображенную на рис. 6. Хотя она гладкая и не имеет никаких особенностей, кривую отнюдь не сразу поставишь в соответствие чему-либо, известному из повседневной жизни. Если бы вас попросили запомнить кривую и при случае точно воспроизвести ее, задача оказалась бы безнадежной. Вы легко могли бы воспроизвести, скажем, окружность или какую-нибудь белее сложную, но легко узнаваемую кривую, например эллипс (который представляет собой не что иное, как окружность, рассматриваемую под некоторым углом); однако кривая на рис. 6 обладает более сложной структурой, чем окружность: и наклон касательной к ней, и кривизна кривой изменяются вдоль нее по определенному закону, который тем не менее трудно установить точно.

Рис.6. Экспонента. Форма этой кривой отражает важные математические особенности, характерные для широкого круга физических явлений. Представленная в виде графика экспонента может, например, описывать неограниченный рост народонаселения.

Что же касается математика, то он без труда опознает эту кривую, и ему известно, как "за кодировать" все ее свойства, чтобы легко вспомнить их и воспроизвести с любой степенью точности, если это понадобится. В действительности эта кривая представляет график так называемой экспоненциальной функции, или экспоненты, которая математически записывается как е^x и часто встречается в самых различных задачах. Математику хорошо известно, что эту функцию можно вывести из формулы (1 + х/n)^n в пределе, когда п становится бесконечно большим, и поэтому, вооружившись микрокалькулятором, он может вычислить координаты каждой точки на графике с любой требуемой точностью.

“Экспоненциальная функция – одно из самых изящных соотношений, известных человеку”, – утверждает математик. Почему?

Предположим, что нас интересует наклон кривой в каждой ее точке. Сначала кривая идет очень полого, а по мере продвижения слева направо становится все круче. Построим график, но не самой экспоненциальной функции, а угла наклона касательной к ней. Как он выглядит? Оказывается, совпадает с графиком самой экспоненциальной функции. Экспонента – это такая функция, значение которой в любой точке совпадает с углом наклона касательной к ней в этой точке (или по крайней мере пропорционально ему). Именно поэтому экспоненциальная функция играет столь важную роль при описании простых форм роста, например, неограниченного размножения популяции, градиент (мера скорости роста) которой пропорционален численности самой популяции. В некоторых районах земного шара эта зависимость примерно справедлива и применительно к росту народонаселения.

В экспоненциальной кривой можно обнаружить скрытую красоту и другого рода. Взгляните на кривую, изображенную на рис. 7. Она напоминает нам нечто знакомое: волну. В математике ее называют синусоидой и обозначают sin x; эту кривую можно задать и алгебраически, вычисляя по формуле.

На первый взгляд синусоида имеет весьма отдаленное сходство с экспонентой. Синусоида периодична: подъемы на графике регулярно чередуются со спадами, тогда как экспоненциальная кривая непрерывно и все быстрее возрастает. Связь между этими двумя кривыми обнаружится, если начертить график градиента синусоиды: мы получим другую синусоиду, смещенную на четверть длины волны вправо относительно первой. Эта кривая называется косинусоидой. Построив график угла наклона касательной косинусоиды, мы сдвинем последнюю еще на четверть длины волны вправо и получим кривую, совпадающую с первой синусоидой, только перевернутой. Проделав такую операцию еще два раза, мы вернемся к исходной кривой. Таким образом, экспонента и синусоида (или косинусоида) обладают одним общим важным свойством симметрии, устанавливающим связь между формой самой кривой и формой кривой, описывающей угол наклона касательной к ней (градиент).

1 ... 13 14 15 16 17 18 19 20 21 ... 77
На этой странице вы можете бесплатно читать книгу Суперсила - Девис Пол бесплатно.
Похожие на Суперсила - Девис Пол книги

Оставить комментарий