Шрифт:
Интервал:
Закладка:
Мифемой является пара: действие по отрицанию какого-либо атрибута и отрицание такого действия, т. е. пара:
Раскрытие второй составляющей формулы мифемы по закону отрицания отрицания дает возможные варианты сюжетных ходов.
Рис. 6. Изменения атрибутов при наказании слепотой
Систему можно представить двоичным вектором, координаты которого состоят из 0 или 1. Наличие 1 в соответствующем поле означает наличие атрибута, О — его отсутствие. Если в системе несколько элементов, можно соединить их представляющие вектора в один большой вектор. Отрицание системы выражается в изменении определенных полей вектора системы на противоположные. Например, ослепление Эдипа или тех, кто подсмотрел жизнь богов, сопровождается изменением двух координат (рис. 6). Отрицание может быть и положительным: не имел атрибута и получил его. Построение точных таблиц соответствия операторов отрицания в мифеме (связь полей в векторах взаимодействующих систем) — главная задача этнографа.
Рассмотрим теперь, как построена волшебная сказка. Есть две системы с выделенными атрибутами: волшебная и обычная человеческая. Обычная система при помощи волшебной явно или не явно выводится из равновесия. Затем вступает в действие закон устойчивости целого. Система начинает действия по возвращению утраченного атрибута. Для победы над волшебной системой необходимы функции, отрицающие волшебные атрибуты. Появляются дарители и волшебные помощники или средства. Но они не возникают просто так, а включаются в обычную систему по закону отрицания отрицания. Герой либо освобождает своих помощников, либо захватывает их. Так как каждое вспомогательное средство обладает одним волшебным атрибутом и в этом только состоит его смысл, отрицание обычной системы со стороны этого средства состоит в отрицании свойства невозможности его использования. Тем самым средство включается в обычную систему. После этого возможно взаимодействие с волшебной системой, заключающейся в использовании волшебной силой всех своих атрибутов — попыток отрицания обычной системы и нейтрализации этих попыток уже имеющимися возможностями.
Таким образом, в сказке, как и в мифе, элементарной неделимой единицей следует рассматривать пару «действие и его отрицание», т. е. пару вида (S =>
Q);7 (S=>
Q). Раскрытие каждого такого отрицания действия по закону отрицания отрицания и составляет сюжетное построение сказочного повествования.
Для взаимодействия с волшебной силой необходим простор. Сказка почти всегда начинается с отрицания отношения пространственного соседства. Люди, живущие под одной крышей, в одной пещере, просто рядом, образуют систему, связанную отношением пространственной близости. В силу закона устойчивости охотники возвращаются к родному очагу, путники стремятся в родные места, а перемена места жительства сопровождается ностальгией о прошлом месте обитания. В сказках стремление системы к сохранению пространственной близости выражается в виде запретов: не ходи в дальний лес, не заглядывай в эти комнаты, вернись к указанному сроку. Нарушение запрета приводит к отрицанию пространственной близости, и жертва тут же переносится куда-нибудь за тридевять земель. Запрет эквивалентен отношению пространственной близости.
Рассмотрим формальное применение закона отрицания отрицания в случае отношения пространственной близости. Пусть S1 — волшебная система, S2 — обычная человеческая. Запрет как-то связан с волшебной системой. Поэтому его нарушение направлено против волшебной системы. Возникает ответное действие, получаемое из раскрытия формулы
(S2=К
S1). Возможны три варианта: S1-=>
S2— волшебная сила похищает нарушителя; S1=>
S1— волшебная система ограничивается восстановлением запрета; S1=>
S2 и S1=>
S1 — жертва похищается и запрет восстанавливается.
Все три варианта могут быть выбраны, но второй встречается значительно реже. Хотя отдельным героям удается некоторое число раз испытывать терпение волшебной системы. В третьем случае, если запрет восстанавливается, кто-то его еще должен нарушить. Сказка экономна. В ней нет избыточных построений.
Волшебное средство всегда прикрыто каким-нибудь атрибутом. Это может быть загадка или просьба дарителя, охрана средства, продажа и т. п. Отрицание атрибута приводит к высвобождению волшебного средства и включению его в систему героя. То есть обычно выбирается третий вариант раскрытия закона отрицания отрицания.
Рассмотрим какой-нибудь вариант формального построения волшебной сказки. Пусть S1 — колдун, обладатель волшебного меча, запрет; S2 — красавица, муж; Н — старик-даритель. Выберем построение сказки по формулам
Выбираем варианты отрицаний отрицаний. Получаем возможную последовательность действий:
Как может звучать такая сказка? Надо только уточнить, какие атрибуты отрицаются. По этой информации однозначно восстанавливаются сами действия.
Красавица нарушила запрет. Колдун унес ее за тридевять земель. Юноша встретил старика и помог ему. Старик дал юноше волшебный меч и указал дорогу к колдуну. Колдун пытается убить юношу волшебным мечом. Юноша сам своим волшебным мечом убивает колдуна и возвращается с красавицей-женой домой.
В векторной форме волшебная система в этом сказочном варианте задается начальным вектором, изображенным на рис. 7. Изменения представляющего атрибутного вектора колдуна будут следующие: (0,1,1,1) — >- (1,0,1,1) (1,0,1,0) — > (0,0,0,0). Движение системы «колдун» выражается постепенным обнулением всех координат представляющего вектора, соответствующих потере атрибутов по ходу сюжета. В конце от колдуна остаются одни нули — все его функции исчерпаны.
Часто волшебным средством можно воспользоваться некоторое число раз. В этом случае в представляющем векторе необходимо вводить дополнительные поля, выражающие количество попыток использования средства, каждая осуществленная попытка — замена соответствующей единицы на ноль. Таким образом, битву можно представить как постепенную потерю единиц, а существование сказочного объекта возможно, если он сохранил хотя бы одну единицу. Красавицы не умирают, а засыпают — та же смерть, но с сохранением атрибута красоты; мертвый защитник оживает, если он еще кому-то нужен. И только абсолютные нули исчезают из волшебного мира.
В сказках и мифах возможна перестановка сюжетных конструкций, составляющих элементарные единицы. Например, юноша мог встретить старика и до похищения девушки. Но нельзя переставлять элементы внутри таких единиц — отрицание действия всегда идет после его применения.
Каждое отрицание связано с некоторым функциональным атрибутом системы. Таких атрибутов не так уж и много. Они уже перечислялись: мертвый, живой, добрый, жадный, красивый, уродливый, сильный, слабый, родовая связь, соседство и т. п. Сказки могут начинаться с отрицания любого атрибута или нескольких. Например, часто они начинаются со смерти отца, у которого три сына, причем тот, кто будет героем, — самый младший, некрасивый и глупый. Смерть отца — это воздействие волшебной силы, отрицающей «живое». Отрицание этого действия приводит к столкновению с волшебным и получению новых положительных атрибутов. Некрасивый становится молодцем-красавцем, а Иванушка-дурачок оказывается вовсе и не таким уж дурачком.
Так как атрибутов только конечное число и у всех народов они одинаковы, выходит, что функционально все сказки устроены одинаково. Это не таинственный эмпирический факт, а следствие законов мышления и логики мира.
Интересно, что формальная математическая логика вытекает из мифологического мышления. Если действие понимать как логическое следствие, должны быть тождественно истинными следующие формулы, выражающие закон отрицания отрицания:
Для тех, кто знаком с формальным исчислением высказываний, не составляет труда проверить, что в самом деле эти формулы тождественно истинны, т. е. являются теоремами исчисления высказываний. Более того, добавив правило логической транзитивности, можно легко превратить их в аксиомы исчисления высказываний.
Так волшебная логика смыкается с формальной. Законы логики придумал не Аристотель — они всегда были в мифах и только ждали формальной системы обозначений.
Как в физике, сказка предстает через динамическое столкновение двух систем, порождающее цепную реакцию с аннигиляцией элементарных частиц. А может, и наш мир — та же длинная-длинная сказка, а мы, ее персонажи, в ней для того, чтобы ее рассказать.
- Информационные технологии и лингвистика XXI века - Алла Викторовна Гуслякова - Детская образовательная литература / Науки: разное / Языкознание
- Контактная лингвистика - Жером Багана - Языкознание
- «Свободная стихия». Статьи о творчестве Пушкина - Александр Гуревич - Языкознание
- Как выучить английский язык - Сергей Ним - Языкознание
- СЛОВООСНОВИЯ. СЛОВООСНОВИЯ – СЛОЭНА (НАУКА) СЛОВОЗНАНИЙ - Валерий Мельников - Языкознание
- От абракадабры до яхонта. Как понимать и использовать редкие и необычные слова в русском языке - Елена Владимировна Первушина - Языкознание
- Как правильно учить английский язык простому человеку, а не лингвисту - Лена Бурцева - Детская образовательная литература / Языкознание
- Морфонология как парадигматическая морфемика - Евгений Васильевич Клобуков - Языкознание
- Русь нерусская (Как рождалась «рiдна мова») - Александр Каревин - Языкознание
- Лаборатория логоса. Языковой эксперимент в авангардном творчестве - Владимир Фещенко - Языкознание