Шрифт:
Интервал:
Закладка:
— Интересно! — хихикнул президент. — Выходит, геометрия — наука о мухах.
— Уж ты скажешь! Не о мухах, а о точках, линиях, плоскостях. Просто муху можно условно принять за точку.
— Смотря какую муху! — не унимался Нулик.
— Прошу прекратить прения, — сказал Олег. — Переходим к вопросу о волшебных ножницах.
Сева поднял руку:
— Ножницы не сработали потому, что Магистр не знал, что такое «пи». По его мнению, греческой буквой «пи» обозначают 180 градусов, а на самом деле…
— На самом деле буквой «пи» обозначают отвлечённое число, — перебил Нулик. — Это и я знаю. Оно равно… равно…
— Президент хочет сказать, что число «пи» равно отношению длины любой окружности к её диаметру, — подсказал Олег.
Нулик важно кивнул:
— Вот именно.
— А ещё он хочет сказать, что отношение это равно приближённо трём целым и четырнадцати сотым, — насмешливо сказала Таня.
— Нечего подшучивать, — обиделся Нулик. — Я и вправду это хотел сказать.
Олег примирительно погладил его по плечу:
— Хитрюга! А знаешь ли ты, что ещё Архимед нашёл, что длина окружности относится к своему диаметру, как 22/7? И отношение это точнее, чем 3, 14… Ладно, ладно, не дуйся. Скажи-ка лучше, на сколько же градусов должен был Магистр раскрыть ножницы, чтобы они сработали?
— Надо было 180 разделить на 3,14, — сказал президент, ничуть не растерявшись. — Получится примерно 57 градусов 17 минут 45 секунд. А вовсе не 1 градус, как это думал Магистр.
— Умница, — похвалила Таня. — Добавь ещё, что угол этот называется радианом.
— Да, да, — подтвердил Нулик, — градианом.
Никак не пойму, чего больше в этом ребёнке — остроумия или невежества?
После небольшого перерыва мы перешли к тому вопросу, который задал себе наш рассеянный учёный в Музее самообслуживания: почему на медалях с каждой стороны изображены разные учёные? Но если Магистра это озадачило, то меня нисколько.
Я начал свой рассказ с медали, на которой изображены Эвклид и Лобачевский.
Великий древнегреческий математик Эвклид жил в Александрии в годы царствования Птолемея I, в начале III века до нашей эры. В тринадцати томах своего знаменитого труда «Начала» Эвклид изложил основы геометрии, той самой науки, которую изучают в школе. Школьники хорошо знают, как порой сложны бывают доказательства теорем. Вот и царь Птолемей тоже спрашивал Эвклида, не может ли он упростить свои рассуждения и пойти по более лёгкому пути? Говорят, будто Эвклид ответил на это, что в геометрии нет царских дорог.
В основу геометрии Эвклид положил несколько постулатов, иначе говоря, аксиом. А аксиома, как известно, — это то, что принимается без доказательства. Так вот, с помощью эвклидовых аксиом можно доказать любую геометрическую теорему.
Но есть среди этих аксиом одна, пятая по счёту, которая не столь уж бесспорна, чтобы принимать её без доказательства. С другой стороны, доказать её не смог пока никто. Так же, впрочем, как и опровергнуть. Но самое главное, что многие теоремы геометрии Эвклида могут быть доказаны и без этой аксиомы.
Что же утверждает Эвклид в своём пятом постулате? Он утверждает, что через какую-либо точку можно провести только одну прямую, которая не пересекалась бы с другой прямой, то есть была бы ей параллельна. И с первого взгляда действительно кажется, что иначе и быть не может.
Но вот в XIX веке другой великий математик, профессор Казанского университета Николай Иванович Лобачевский, дерзнул выдвинуть другой постулат, прямо противоположный эвклидовому: через любую точку можно провести не одну, а сколько угодно прямых, которые не пересекались бы с другой прямой. Все эти прямые он тоже назвал параллельными.
Невероятно? Противоречит здравому смыслу? Но всегда ли следует этому здравому смыслу доверять? Бывает, что он нас и подводит. Многие открытия были сделаны только потому, что учёные сумели пойти против привычных, общеизвестных, общепринятых истин, которые вовсе не всегда так уж безупречны и неуязвимы.
Так вышло и с постулатом Лобачевского: он положил начало новой геометрии, которую, в отличие от эвклидовой, стали называть неэвклидовой. И хотя сам Лобачевский называл свою геометрию воображаемой, его «воображаемая» геометрия нашла огромное практическое применение в современной физике.
— Надеюсь, теперь вам ясно, — заключил я, — почему Эвклид и Лобачевский оказались на двух сторонах одной медали?
Ребята молча кивнули.
— Прекрасно. Тогда обратимся к другой паре: Птолемей — Коперник.
Древнегреческий астроном Клавдий Птолемей (не смешивайте его, пожалуйста, с царём Птолемеем) жил во II веке нашей эры. Астрономия того времени считала, что Земля неподвижна, а все планеты, Луна и Солнце обращаются вокруг неё.
Птолемей тоже разделял эту неверную точку зрения и всё же умудрился с помощью сложнейших геометрических построений достаточно точно рассчитать движение планет по небу. Его вычислениями и таблицами пользовались астрономы в течение многих столетий. И только в середине XVI века великий польский астроном Николай Коперник создал новую систему мироздания, поместив в центре её не Землю, а Солнце.
Коперник буквально перевернул систему Птолемея, поставил её с головы на ноги. Он утверждал, что не Солнце обращается вокруг Земли, а Земля и все другие планеты обращаются вокруг Солнца. К сожалению, Коперник не до конца разобрался в строении Вселенной (да и можно ли вообще разобраться в этом до конца?). Он считал, что Солнце — не только центр нашей Солнечной системы, но и центр всей Вселенной, а звезды прикреплены к небесному куполу и вместе с ним обращаются вокруг Солнца.
С тех пор геоцентрическая система Птолемея уступила место гелиоцентрической системе Коперника — системе, где в центре не Земля (по-гречески «гео»), а Солнце («гелиос»). Но на самом деле Солнце — не центр Вселенной, а всего лишь маленькая звёздочка среди миллиардов других звёзд. Звезды эти объединяются в одно общее семейство, которое называется Галактикой. А таких галактик тоже великое множество. И все они составляют новое, ещё более обширное семейство — Метагалактику. Но и это ещё не конец…
Ясно, что всего этого Коперник в то далёкое время знать не мог. Так что не будем предъявлять к нему непосильных требований. Вполне достаточно и того, что он сделал. И хотя его представление о Вселенной прямо противоположно Птолемееву, нельзя отрицать, что учения Птолемея и Коперника — две стороны одной медали. Кто знает: не было бы Птолемея, может быть, не было бы и Коперника!
— Э, нет! — не согласился со мной Сева. — Была бы Вселенная, а Коперник найдётся!
— Перейдём к третьей медали, — продолжал я, — Ньютон — Эйнштейн.
Если в XVI веке Коперник установил, что Земля и планеты движутся вокруг Солнца, а в XVII веке немецкий астроном Иоганн Ке́плер открыл законы этого движения, то в конце того же XVII века гениальный английский учёный Исаак Ньютон завершил их труды. Ньютон объяснил, почему планеты движутся именно так, а не иначе. Он открыл закон всемирного тяготения, то есть доказал, что все тела взаимно притягиваются. И ещё он установил, что притягиваются они тем сильнее, чем массивнее, и тем меньше, чем дальше друг от друга. Если, например, расстояние между двумя телами увеличить вдвое, то сила их взаимного притяжения уменьшится, только не вдвое, а вчетверо, то есть в два в квадрате раза. Иначе говоря, сила притяжения зависит от квадрата расстояния между телами.
Ньютон открыл и много других законов. Он создал новую небесную механику. Он доказал, что все тела движутся по одним и тем же законам: и падающее яблоко, и хвостатая комета.
Открытие Ньютона было величайшим научным достижением. При этом законы Ньютона так точно подтверждались на опыте, что сомневаться в них никому и в голову не приходило.
Но вот в начале нашего столетия появились труды другого гениального физика — Альберта Эйнштейна.
— И он опроверг Ньютона?! — с надеждой в голосе перебил меня Нулик. (Очевидно, ему очень нравилось, когда кто-то кого-то опровергает.)
Пришлось огорчить его: Эйнштейн не опроверг ньютоновых законов. Но он их уточнил. Эйнштейн доказал, что законы движения, открытые Ньютоном, справедливы только в тех случаях, когда скорость движущегося тела мала по сравнению со скоростью света. А скорость света, как известно, составляет 300 тысяч километров в секунду. Так вот, если тело движется со скоростью, близкой к скорости света, законы Ньютона требуют существенных поправок. Вот Эйнштейн и поправил Ньютона. Но кого бы он поправлял, если бы Ньютона не было? Так что и эта пара не случайно помещена на одной медали.
Я с облегчением откинулся на спинку стула, намереваясь насладиться заслуженным отдыхом. Но отдохнуть мне не пришлось.
— А что это за поправку внёс Эйнштейн в ньютоновы законы? — спросил Олег.
- Путевые заметки рассеянного магистра - Владимир Левшин - Детская образовательная литература
- Черная маска из Аль-Джебры - Владимир Левшин - Детская образовательная литература
- Три дня в Карликании - Владимир Артурович Левшин - Детская образовательная литература / Прочее
- Три дня в Карликании - Владимир Левшин - Детская образовательная литература
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- В поисках похищенной марки - Владимир Левшин - Детская образовательная литература
- С вечера до утра - Игорь Акимушкин - Детская образовательная литература
- Воспоминания юнги Захара Загадкина - Михаил Ильин - Детская образовательная литература
- Теории Вселенной - Павел Сергеевич Данильченко - Детская образовательная литература / Физика / Экономика
- Пять «Почему?». Руководителю страны - Владимир Токарев - Детская образовательная литература