Рейтинговые книги
Читем онлайн Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 118

если а > 0, b > 0, n — натуральное число.

10.7. Докажите, что при а > b > 0 и pq где а, b и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.

10.8. Докажите, что  при n > 1.

10.9. Докажите неравенство

a/b + b/c + c/a > 3

где аb и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.

10.10. Докажите, что

а² + b² + с² ≥ 4S√3,

где а, b, с — стороны, а S — площадь некоторого треугольника.

10.11. Докажите, что

(x − 1)(x − 3)(x − 4)(x − 6) + 10 ≥ 1

при всех действительных значениях x.

10.12. Докажите, что если действительные числа x, у, z, не равные нулю, удовлетворяют равенствам:

x + у + z = xуz     и     x² = уz,

то

x² ≥ 3.

10.13. Докажите, что если x, у, z — действительные числа, удовлетворяющие равенствам

x + у + z = 5,        уz + zx + xу = 8,

то

1 ≤ x ≤ 7/3,      1 ≤ y ≤ 7/3,        1 ≤ x ≤ 7/3. [9]

10.14. Решите неравенство

аx² + x + 1 > 0,

где а ≠ 0 — произвольное действительное число.

10.15. Найдите все действительные значения m, при которых квадратный трехчлен x² + mx + (m² + 6m) будет отрицателен при всех значениях x, удовлетворяющих неравенству 1 < x < 2.

10.16. Найдите все действительные значения а, при которых корни многочлена x² + x + а будут действительными и оба корня будут больше а.

10.17. При каких значениях к корни многочлена

k²x² + kx − 2

будут действительными и один корень по абсолютной величине будет больше 1, а другой по абсолютной величине будет меньше 1?

10.18. Найдите все действительные значения m, для которых неравенство

тx² − 4x + 3m + 1 > 0

удовлетворяется при всех положительных значениях x.

Решите неравенства:

10.19. |x² − 2x − 3| < 3x − 3.

10.20. |x − 3| > |x + 2|.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27. 4x ≤ 3 · 2√x + x + 4√x+1.

10.28. 4x² + 3√x +1 + x · 3√x < 2x² · 3√x + 2x + 6.

10.29[10].

Решите неравенства:

10.30. (4x² + 12x + 10)|x³ − 5x + 2| ≥ (4x² + 12x + 10)x − 2.

10.31. xlogаx +1 > а²x.

10.32[11].

10.33.

10.34.

10.35.

10.36. log2 (2x − 1) log½ (2x + 1 − 2) > −2.

10.37. log|x + 6| 2 · log2(x² − x − 2) ≥ 1.

10.38.

10.39. logkxx + logx(kx²) > 0, где 0 < k < 1.

10.40. logx[log2(4x − 6)] ≤ 1.

10.41.

10.42.

10.43. |√2 |x| − 1| · 1ох2 (2 − 2x²) > 1.

10.44.

10.45. logx² − 1 (3x − 1) < logx² − 1 x².

10.46.

10.47. При каких значениях у верно следующее утверждение: «Существует хотя бы одно значение x, при котором удовлетворяется неравенство

2 log0,5 y² − 3 + 2x  log0,5 y² − x² > 0»?

10.48. При каких значениях а из неравенства

x² − а(1 + а²)x + а4 < 0

следует неравенство

x² + 4x + 3 < 0?

10.49. Для каждого действительного а решите неравенство

10.50. Решите неравенство

(x² + 8x + 15)22 + x > x² + 7x + 10.

10.51. Определите, какие из чисел −4, −1, 1, 4 являются решениями неравенства

|0,5 − lg 5|x ≤ 0,5 − lg 5.

10.52. Решите неравенство

(√5 − 2)x − 6 ≤ (√5 + 2)√x.

10.53. Решите неравенство

Глава 11

Логарифмические и показательные уравнения и системы

Если ар, где а и p — действительные числа, существует, то

|a| = |а|p       (1)

По определению logа N есть число, удовлетворяющее равенству

где а > 0 и а ≠ 1.

Формулы

(2)

называются формулами потенцирования. Первые две являются неабсолютными тождествами (см. введение к главе 9); при четных n и третья формула оказывается неабсолютным тождеством. Применение этих формул при решении уравнений (под применением формулы мы понимаем замену в уравнении выражения, стоящего в ее левой части, на выражение, стоящее справа) может привести только к приобретению посторонних решений.

Формулы (2), прочитанные справа налево, называются формулами логарифмирования. Чтобы формулы логарифмирования не приводили к потере решений, ими пользуются в виде

logа хy = logа |x| + logа |y|;

logа x/y = logа |x| − logа |y|;

logа x2k = 2k logа |x| (k — целое, k ≠ 0).

Следующие формулы позволяют переходить от логарифма с одним основанием к логарифму с другим основанием:

Если в третьей из этих формул n = 2k, то в правой части нужно писать вместо основания а основание |а|.

Формула

(3)

является неабсолютным тождеством, так как ее правая часть перестает существовать при f(x) = 1, в то время как левая часть при соответствующих значениях x может существовать и обращаться в нуль.

Таким образом, применение формулы (3) может привести к потере решений, при которых f(x) = 1.

При решении уравнений вида

φ(x)f(x) = φ(x)g(x)       (4)

нужно воспользоваться условием равенства показателей: если φ(x) ≠ −1, 0, +1, то следствием уравнения (4) является уравнение

f(x) = g(x).           (5)

Пусть x = а — корень уравнения (4). Тогда

φ(а)f(а) = φ(а)g(а).

В силу (1) можно записать, что

|φ(а)|f(а) = |φ(а)|g(а).

Так как |φ(x)| ≠ 0, 1 и |φ(x)| > 0, то по свойству показательной функции имеем

f(а) = g(а),

т. е. x = а — корень уравнения (5).

Случаи, когда φ(x) равно −1, 0 или 1, нужно рассмотреть отдельно.

1 ... 11 12 13 14 15 16 17 18 19 ... 118
На этой странице вы можете бесплатно читать книгу Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин бесплатно.
Похожие на Сборник задач по математике с решениями для поступающих в вузы - Альберт Рывкин книги

Оставить комментарий