Шрифт:
Интервал:
Закладка:
Итак, заставив льдинку скользить по льду, мы можем закинуть ее раз в 25 дальше, чем бросив в воздух.
Если принять во внимание, что брошенная льдинка может продолжать двигаться и после падения, то дальность скольжения будет превышать дальность бросания уже не столь значительно; но и в таком случае преимущество на стороне скользящей, а не брошенной льдинки.
37. Падение тела
Падение тела «Тик – так» карманных часов длится не одну секунду, как часто думают, а только 0,4 с. Поэтому путь, проходимый падающим телом в этот промежуток времени, равен
т. е. около 80 см.
38. Затяжной прыжок с парашютом
Противоречие объясняется тем, что падение с нераскрытым парашютом ошибочно принято было за свободное, не замедляемое сопротивлением воздуха. Между тем оно существенно отличается от падения в несопротивляющейся среде.
Попробуем установить, хотя бы приблизительно, подлинную картину падения при затяжном прыжке. Будем пользоваться для расчетов следующей найденной из опыта приближенной формулой для величины f сопротивления воздуха при рассматриваемых условиях:
f = 0,03 v2 кг,
где v – скорость падения в метрах в секунду. Сопротивление, как видим, пропорционально квадрату скорости; а так как парашютист падает с возрастающей скоростью, то наступает момент, когда сила сопротивления делается равной весу тела. С этого момента скорость падения расти больше не будет; падение из ускоренного становится равномерным.
Для парашютиста это наступает тогда, когда его вес (вместе с парашютом) сделается равным 0,03v2; принимая вес снаряженного парашютиста в 90 кг, имеем уравнение
0,03v2 = 90,
откуда v = 55 м/с.
Итак, парашютист падает ускоренно лишь до тех пор, пока не накопит скорости 55 м/с. Это наибольшая скорость, с какою он опускается, в дальнейшем скорость уже не возрастает. Определим – опять приближенно – сколько секунд употребил парашютист для достижения этой максимальной скорости. Примем во внимание, что в самом начале падения, пока скорость мала, сопротивление воздуха ничтожно, и тело падает как свободное, т. е. с ускорением 9,8 м/с. К концу же интервала ускоренного движения, когда устанавливается равномерное падение, ускорение равно нулю. Для нашего приближенного расчета можно допустить, что ускорение в среднем равнялось
Если принять таким образом, что секундная скорость нарастала на 4,9 м в секунду, то она достигает величины 55 м по истечении
55: 4,9 = 11 с.
Путь 5, проходимый телом в 11 секунд такого ускоренного движения, равен
Теперь выясняется подлинная картина падения Евдокимова. Первые 11 с он падал с постепенно уменьшающимся ускорением, пока не накопил скорости 55 м/с, приблизительно на 300-м метре пути. Остальной путь затяжного прыжка он проходил равномерным движением со скоростью 55 м/с. Равномерное движение, согласно нашему приближенному расчету, длилось
а весь затяжной прыжок
11 + 138 = 149 с,
что мало отличается от действительной продолжительности (142 с).
Сделанный нами элементарный расчет надо рассматривать лишь как первое приближение к действительности, так как он основан на ряде упрощающих допущений.
Приведем для сравнения данные, полученные путем опыта: при весе снаряженного парашютиста 82 кг максимальная скорость устанавливается на 12-й секунде, когда парашют опускается на 425–460 м (Забелин, М. Прыжок с парашютом. М., 1933).
39. Куда бросить бутылку?
Так как мы привыкли к тому, что прыгать из движущегося вагона безопаснее вперед по направлению движения, то может казаться, что бутылка ударится о землю слабее, если ее кинуть вперед. Это неверно: вещи надо бросать назад, против движения поезда. Тогда скорость, сообщенная бутылке бросанием, будет отниматься от той, какую бутылка имеет вследствие инерции: в итоге бутылка встретит землю с меньшей скоростью. При бросании вперед произошло бы обратное: скорости сложились бы, и удар получился бы сильнее.
То, что для человека безопаснее все же прыгать вперед, а не назад, объясняется совсем другими причинами: падая вперед, мы меньше расшибаемся, чем при падении назад[10].
40. Из вагона
Тело, брошенное с некоторою начальною скоростью, – безразлично, в каком направлении, – подвержено той же силе тяжести, какая увлекает и тело, уроненное без начальной скорости. Ускорение падения для обоих тел одинаково, поэтому они достигнут земли одновременно. Значит, вещь, брошенная из движущегося вагона, достигает земли в такой же промежуток времени, как и брошенная из вагона неподвижного.
41. Три снаряда
Рисунок 14 ошибочен. Дальность полета снарядов, брошенных под углами в 30° и в 60°, должна быть одинакова (как и вообще для всяких углов, дополняющих друг друга до 90°). На рис. 14 это не соблюдено.
Что касается снаряда, брошенного под углом в 45°, то на рис. 14 правильно показано, что дальность его наибольшая. Эта максимальная дальность должна вчетверо превышать подъем самой высокой точки траектории, – это на рис. 14 также соблюдено (приблизительно). Правильный чертеж приложен (рис. 74).
Рис. 74. К ответу на вопрос 41
42. Путь брошенного тела
В большинстве учебных книг утверждается без оговорок, что тело, брошенное в пустоте под углом к горизонту, движется по параболе. Весьма редко делается при этом замечание, что дуга параболы является только приближенным изображением истинной траектории тела; оно верно лишь при небольших начальных скоростях брошенного тела, т. е. пока тело не слишком удаляется от земной поверхности и, следовательно, пока можно пренебречь уменьшением силы тяжести. Если бы брошенное тело двигалось в пространстве, где сила тяжести постоянна, путь его был бы строго параболический. В реальных же условиях, когда сила притяжения убывает с расстоянием по закону обратных квадратов, брошенное тело должно подчиняться 1–му закону Кеплера и, следовательно, двигаться по эллипсу, фокус которого находится в центре Земли.
Поэтому, строго говоря, каждое тело, брошенное на земной поверхности под углом к горизонту, должно в пустоте двигаться не по дуге параболы, а по дуге эллипса. При современных артиллерийских скоростях различие между обеими траекториями весьма незначительно.
Но в будущем, когда технике придется иметь дело со скоростями крупных жидкостных ракет, летящих в несопротивляющейся среде, нельзя будет даже приближенно принимать путь ракеты выше пределов атмосферы за параболический.
Рис. 75. Тело, брошенное наклонно к горизонту, должно в пустоте двигаться по дуге эллипса, фокус которого F в центре планеты
43. Наибольшая скорость артиллерийского снаряда
Скорость артиллерийского снаряда должна возрастать все время, пока давление на него пороховых газов сзади превосходит сопротивление воздуха спереди. Давление же пороховых газов не прекращается в момент выхода снаряда из канала орудия: газы продолжают давить на снаряд и вне орудия с силою, которая в первые мгновения превосходит сопротивление воздуха; следовательно, скорость снаряда должна еще в течение некоторого времени расти. Только тогда, когда расширение газов в свободном пространстве уменьшит их давление до того, что оно станет слабее сопротивления воздуха, снаряд будет подвержен спереди большему напору, чем сзади, и скорость его станет уменьшаться.
Итак, максимальной своей скорости снаряд действительно должен достигать не внутри орудия, а вне его, на некотором расстоянии от жерла, т. е. спустя короткий промежуток после того, как он уже покинул ствол орудия.
44. Прыжки в воду
Опасность прыжка в воду с значительной высоты состоит, главным образом, в том, что накопленная при падении скорость сводится к нулю на слишком коротком пути. Если, например, пловец бросается с высоты 10 м и погружается в воду на глубину 1 м, то скорость, накопленная на пути 10 м свободного падения, уничтожается на участке в 1 м. Отрицательное ускорение при погружении в воду должно быть в 10 раз больше ускорения свободно падающего тела. При погружении в воду пловец испытывает поэтому давление снизу, в данном случае вдесятеро превосходящее обычное давление, порождаемое весом. Иными словами, тело пловца становится словно в 10 раз тяжелее С вместо 70 кг весит 700 кг. Такой непомерный груз, действуя даже короткое время (пока длится погружение), может вызвать в организме серьезные расстройства.
Отсюда следует, между прочим, что вредные последствия прыжка смягчаются при возможно более глубоком погружении в воду; накопленная при падении скорость поглощается тогда на более длинном пути, и ускорение (отрицательное) становится меньше.
- Психология физической культуры. Учебник - Коллектив авторов - Детская образовательная литература
- Загадки и диковинки в мире чисел - Яков Исидорович Перельман - Детская образовательная литература / Математика / Развлечения
- Курс лекций и практические рекомендации для самостоятельной подготовки студентов по дисциплине «История физической культуры и спорта» - Елена Дивинская - Детская образовательная литература
- Технологии физкультурно-спортивной деятельности в адаптивной физической культуре - С. Евсеев - Детская образовательная литература
- Научные фокусы и загадки - Яков Перельман - Детская образовательная литература
- Занимательная физика. Книга 1 - Яков Перельман - Детская образовательная литература
- Математика для любознательных (сборник) - Яков Перельман - Детская образовательная литература
- ФСБ. Машина смерти. Чекист остается чекистом. (СИ) - Сокольников Борис - Детская образовательная литература
- История. Новый полный справочник школьника для подготовки к ЕГЭ - Владимир Барабанов - Детская образовательная литература
- Лыжная подготовка студентов - Петр Щербинин - Детская образовательная литература