Шрифт:
Интервал:
Закладка:
— Из чего в сказке видно, что она была Аленушкой?
Хотелось бы, чтобы дети вспомнили, что купец ее принимал за свою жену («не распознал» в ней ведьму) — значит, ведьма совсем стала как Аленушка.
После этого звучит контрвопрос:
— Так что, она превратилась в девушку, и теперь можно сказать, что это уже Аленушка?
Только когда дети возмутятся, педагог спрашивает:
— А из чего в сказке видно, что она была ведьмой?
Дети должны вспомнить, как она себя вела, как хотела зарезать Иванушку, как подговаривала на это купца.
— Значит, она все же осталась ведьмой?
Возвращение к решению диалектической задачи при помощи схемы.
Воспитатель прикрепляет к доске квадраты и говорит:
— Давайте черным квадратом обозначим ведьму, а белым — Аленушку. А как же нам обозначить, что ведьма превратилась в Аленушку?
Скорее всего, дети скажут, что Аленушку стоит обозначить черно-белым квадратом. Если же этого не происходит — можно построить работу так же, как при обсуждении Иванушки-козленка.
Если дети единодушно предлагают черно-белый квадрат, педагог говорит: «Я думаю — черно-белый: вдруг это уже не Аленушка, а ведьма в ее обличии?»
Если ребята соглашаются, что это Аленушка, превращенная в ведьму, воспитатель говорит: «А может, это настоящая Аленушка, и ее можно обозначить белым квадратом?».
Когда дети подтвердят, что вполне такое может быть, воспитатель повторяет вопрос: «Так какой же значок можно подобрать к картинке с изображением Аленушки?».
Диалектическое преобразование.
Результатом обсуждения может быть вывод, что, в зависимости от эпизода сказки, нужно использовать то белый (в начале), то черно-белый квадратик. Кто-то из ребят может обнаружить, что белым квадратиком можно обозначить и Аленушку в самом конце сказки.
5. Рисуем иллюстрации к сказке
Цели. Развитие способности выражать отношение к героям сказки через символические средства.
Материалы. Серый, черный, белый квадраты.
Методика проведенияВ начале занятия педагог предлагает детям вспомнить те открытия, которые были сделаны в ходе работы со сказкой «Сестрица Аленушка и братец Иванушка», затем говорит: «Посмотрите, сегодня на доске нет никаких картинок — только квадратики. А вы сможете расшифровать, что они обозначают?»
По ответам ребят можно судить, насколько им удалось усвоить суть схемы объединения.
Если дети будут говорить, что это Иванушка, превратившийся в козленка, или ведьма, превратившаяся в Аленушку, — замечательно. Если же будут звучать другие версии (Иванушка, Аленушка), обязательно стоит остановиться и поставить перед детьми вопрос:
— Вася говорит, что серый квадратик обозначает Аленушку, а Петя — Аленушку, превратившуюся в ведьму. Кто же из них прав?
Следует обязательно выслушать все версии и завершить обсуждение только тогда, когда будет получено убедительное объяснение, что черно-белый квадрат обозначает одновременность противоположностей — девочки и ведьмы, мальчика и животного.
Далее педагог предлагает каждому ребенку выбрать эпизод сказки, который он хочет нарисовать. Выбор эпизода для дошкольников — серьезная задача: они очень подражательны и часто принимают чужие предпочтения за собственные. Поэтому воспитатель выслушивает детей, помогает им объяснить свой выбор эпизода и делает акцент на том, что всем понравились разные моменты сказки.
Дети рисуют понравившийся фрагмент. По окончании работы детям предлагается рассказать, что они изобразили; можно обсудить, какой эпизод изображался чаще всего, т. е. оказался самым любимым в группе, и почему. Очень важно посмотреть, насколько часто в рисунках и рассказах детей встречаются диалектическое действие объединения или превращения (изображаются ли персонажи-перевертыши, рассказывают ли о них дети).
Детские рисунки скрепляют в одну книжку под названием «Мы читаем сказку „Сестрица Аленушка и братец Иванушка“», к которой педагог рисует обложку. Сюжет для обложки тоже можно придумать вместе с детьми; рисунок должен соответствовать названию — изображать, как дети читают сказку.
Сказка «Разумница»
В фольклоре немало сказок, аналогичных «Разумнице»; во всех подобных сказках героине приходится выполнять сложные задания. Звучат они, на первый взгляд, довольно странно и как будто нарушают все законы логики: требуется прийти «ни босым, ни обутым», «ни пешком, ни верхом», «ни с подарком, ни без подарка». Да и отгадки выглядят как-то абсурдно: девушка (все задания выполняют чаще всего именно девушки) закутывается в сеть; сидит на козле, а одной ногой ступает по земле; приносит в подарок голубя или воробья, да тут же, на глазах царя и выпускает его в небо — вот он, подарок, только что был и нет его.
Но не забудем, что мудрость сказки не лежит на поверхности! Пусть и загадки и отгадки кажутся наивными, но они моделируют вполне реальную жизненную ситуацию: довольно часто жизнь, не подчиняясь требованиям формальной школьной логики, ставит нас перед, казалось бы, невыполнимыми заданиями, когда надо совместить несовместимое, выполнить одновременно противоположные друг другу требования. Даже в дружеских отношениях такие ситуации случаются сплошь и рядом, и человеку приходится решать: как в одно и то же время, например, не поступиться своими правилами, но и не поссориться с другом. Уже в дошкольном возрасте такая проблема вполне может встать перед ребенком: представим себе, что лучший друг взял без спросу чужую машинку, а ты это увидел. Сказать обо всем взрослому — предать друга, но и промолчать, сделать вид, что ничего не произошло, — тоже неправильно, если сам ты считаешь, что чужое без спросу брать нельзя. Получается, что надо одновременно восстановить справедливость и при этом сохранить дружеские отношения. Вот вам и задача, где требуется одновременно совместить противоположности!
Разумеется, подобные задачки возникают не только в отношениях между людьми: именно как совмещение несовместимых требований могут быть описаны и технические открытия. В ХХ веке люди начали путешествовать все чаще и дальше, чемоданы при этом становились все массивнее и массивнее. А может ли чемодан, становясь тяжелее, при этом одновременно стать легче? «Может!» — ответила некая «умная девица» (или умный молодец), и появился чемодан на колесиках!
Создание объекта, который будет совмещать в себе взаимоисключающие отношения, противоположности, описывается диалектическим действием опосредствования.
Конечно, сказка — это вовсе не учебник для юных изобретателей, но она несет ребенку (и взрослому) важное послание: не стоит пугаться заданий, которые кажутся невыполнимыми. Для творческого ума нет невозможного!
В конспекте работы по сказке «Разумница» показано, как можно поставить перед детьми задачу «на опосредствование», но при желании на материале этой сказки можно поставить перед ними и другие задачи. Так, в «Разумнице» можно обнаружить диалектическое действие — обращение: в ответ на невозможные задания (вывести цыплят из вареных яиц) разумница предлагает барину самому выполнить нечто столь же невыполнимое (вырастить просо из готовой каши). В конце же сказки разумница предлагает действовать противоположным образом (не жеребенка пустить к лошадям, а лошадей к жеребенку) и благодаря этому решает задачу.
Проблема в предъявлении задачи по данной сказке состоит в том, что предложенные загадки персонажи сказки сами и решают. Чтобы поставить детей в более активную позицию, надо предложить им самим придумать варианты отгадок (и даже варианты загадок).
Средством решения задачи в сказке «Разумница» является наглядная диалектическая схема. Черный и белый квадраты вводятся для того, чтобы обозначить противоположные характеристики одного и того же объекта. Знак для обозначения объекта, одновременно обладающего противоположными характеристиками, дети будут создавать уже в ходе занятия с помощью взрослого.
1. Читаем, отвечаем на вопросы
Цель. Развитие умения выделять основные действующие лица и последовательность основных эпизодов художественного текста.
Материалы. Иллюстрации к сказке «Разумница» (по количеству основных заданий и загадок): лукошко с яйцами и горшок с кашей, стебелек льна и прутик, девушка в одном ботинке, верхом на зайце и с воробьем в руках, жеребенок и две лошади.
Методика проведенияПедагог читает детям сказку и задает вопросы по тексту, постепенно выставляя на доску картинки с изображением загадок:
— Кто главные герои сказки?
— Зачем барин решил загадки братьям загадывать?
— Как узнал царь о дочери разумнице? Ему сам бедняк о ней рассказал или барин догадался? А как он догадался?
- Мышление. Системное исследование - Андрей Курпатов - Прочая научная литература
- Машина мышления. Заставь себя думать - Андрей Владимирович Курпатов - Биология / Прочая научная литература / Психология
- Занимательная астрономия для детей - Ольга Шибка - Прочая научная литература
- Щупальца длиннее ночи - Такер Юджин - Прочая научная литература
- Прожорливое Средневековье. Ужины для королей и закуски для прислуги - Екатерина Александровна Мишаненкова - История / Культурология / Прочая научная литература
- Власть привычки. Почему мы живем и работаем именно так, а не иначе - Чарлз Дахигг - Прочая научная литература
- На 100 лет вперед. Искусство долгосрочного мышления, или Как человечество разучилось думать о будущем - Роман Кржнарик - Прочая научная литература / Обществознание / Публицистика
- Логика - Александр Ивин - Прочая научная литература
- Шпаргалка по логике - Валерий Вечканов - Прочая научная литература
- Радость науки. Важнейшие основы рационального мышления - Джим Аль-Халили - Прочая научная литература / Самосовершенствование