Рейтинговые книги
Читем онлайн Математика. Утрата определенности. - Морис Клайн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 117 118 119 120 121 122 123 124 125 ... 140

Лишь немногие математики проявили озабоченность по поводу спорных вопросов в основаниях математики, обесценивающих их работу. Эмиль Борель, Рене Бэр и Анри Лебег открыто выразили сомнения в пригодности теоретико-множественных методов, но продолжали пользоваться этими методами с некоторыми оговорками относительно надежности получаемых с их помощью результатов. Борель заявил в 1905 г., что охотно допускает всякого рода рассуждения о канторовских трансфинитных числах, поскольку эти числа оказываются весьма полезными в важных математических исследованиях. Но курс, избранный Борелем и некоторыми другими математиками, не следует расценивать как проявление своего рода математического легкомыслия. Прислушаемся, что сказал по этому поводу Герман Вейль, один из наиболее глубоких математиков современности и, несомненно, наиболее эрудированный из них:

Сейчас мы менее, чем когда-либо, уверены в первичных основаниях математики и логики. Мы переживаем свой «кризис» подобно тому, как переживают его все и вся в современном мире. Кризис этот продолжается вот уже пятьдесят лет [Вейль написал эти строки в 1946 г.]. На первый взгляд кажется, будто нашей повседневной работе он особенно не мешает. Тем не менее я должен сразу же признаться, что на мою математическую работу этот кризис оказал заметное практическое влияние: он направил мои интересы в области, которые я считал относительно «безопасными», и постоянно подтачивал энтузиазм и решимость, с которой я занимался своими исследованиями. Мой опыт, вероятно, разделили и другие математики, небезразличные к тому, какое место их собственная научная деятельность занимает в этом мире в общем контексте бытия человека, интересующего, страдающего и созидающего.

Коль скоро о степени обоснованности математики мы намереваемся судить по ее приложениям, сразу же возникает вопрос: насколько эффективна математика в этом отношении? Рассказывая о математике, созданной и применявшейся до XIX в., мы привели несколько примеров, доказывающих, сколь хорошо математика описывает и предсказывает явления реального мира (гл. III). Но в XIX в. математики, руководствуясь, несомненно, вескими доводами, ввели ряд понятий и теорий, не заимствованных непосредственно из природы и даже, казалось, противоречивших ей, например бесконечные ряды и неевклидовы геометрии, комплексные числа и кватернионы, необычные алгебры и бесконечные множества различной мощности, а также другие не менее странные объекты, которых мы не касались. Никаких оснований ожидать априори, что эти понятия и теории окажутся применимыми, разумеется, не было. Итак, прежде всего убедимся, что вся современная математика работает в приложениях, причем делает это великолепно.

Все величайшие достижения физики за последние сто лет — теория электромагнитного поля, теория относительности и квантовая механика — широко используют современную математику. Мы рассмотрим лишь теорию электромагнитного поля, наиболее знакомую неспециалистам. В первой половине XIX в. физики и математики провели многочисленные исследования электричества и магнетизма. Им удалось получить небольшое число математических законов, описывающих различные электрические и магнитные явления. В 60-е годы XIX в. Джеймс Клерк Максвелл поставил перед собой задачу собрать все эти разрозненные законы и выяснить, насколько они совместимы. Максвелл обнаружил, что для математической совместимости необходимо ввести в уравнения еще один член, который он назвал током смещения. Единственный физический смысл, который Максвелл мог придать току смещения, состоял в утверждении, что источник электричества (грубо говоря, проводник с током) должен быть источником электромагнитного поля (т.е. от него исходит — и распространяется в пространстве — электромагнитная, волна). Испускаемые источником электромагнитные волны имеют различные частоты. Это могут быть радиоволны, улавливаемые антеннами наших радиоприемников и телевизоров, гамма-лучи, видимый свет, инфракрасное и ультрафиолетовое излучение. Так, из чисто математических соображений Максвелл предсказал существование огромного класса ранее не известных явлений и пришел к правильному выводу об электромагнитной природе света.

Электромагнитные волны, как и гравитация (гл. III), обладают одной замечательной особенностью: мы не имеем ни малейших представлений о том, какова их физическая природа. Существование этих волн подтверждается только математикой — и только математика позволила инженерам создать радио и телевидение, которые нашим предкам показались бы поистине сказочными чудесами.

То же самое можно сказать и о всевозможных явлениях атомной и ядерной физики. Математики и физики-теоретики говорят о полях (гравитационном, электромагнитном, поле электрона и других частиц) так, словно все эти поля — «материальные» волны, которые распространяются в пространстве и вызывают различные наблюдаемые эффекты, подобно, скажем, волнам на воде, бьющим о борт судна или разбивающимся о скалы. Но все эти поля не более чем фикции. Их физическая природа нам неизвестна. Они лишь отдаленно связаны с наблюдаемыми явлениями, например c ощущениями света, звука, движения материальных тел, с радио и телевидением. Беркли некогда назвал производную призраком навсегда ушедших величин. Современная физическая теория имеет дело с призраком материи.{179} Но, формулируя математические законы, которым подчиняются фиктивные поля, не имеющие наглядных аналогов в реальности, и выводя из этих законов логические следствия, мы приходим к выводам, допускающим при надлежащем переводе на язык физики проверку c помощью чувственных восприятий.

Фиктивный характер современной науки подчеркивал еще в 1931 г. Альберт Эйнштейн:

Согласно ньютоновской системе, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек)…

После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей, описываемых дифференциальными уравнениями в частных производных. Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которое испытала физика со времен Ньютона…

Нарисованной мною картине чисто фиктивного характера основных представлений научной теории не придавалось особого значения в XVIII и XIX вв. Но сейчас она приобретает все большее значение, по мере того как увеличивается в нашем мышлении расстояние между фундаментальными понятиями и законами, с одной стороны, и выводами, к которым они приводят в отношении нашего опыта, с другой стороны, по мере того как упрощается логическая структура, уменьшается число логически независимых концептуальных элементов, необходимых для поддержания структуры.

([126], т. 4, с. 136-139.)

Современную науку неоднократно восхваляли за то, что, дав рациональные объяснения явлений природы, она исключила духов, дьяволов, ангелов, демонов, мистические силы и анимизм. К этому необходимо добавить теперь, что, постепенно изгоняя физическое и интуитивное содержание, апеллирующее к нашему чувственному восприятию, наука исключила и материю. Теперь она имеет дело только с синтетическими, и идеальными понятиями, такими, как поля и электроны, о которых единственно, что нам известно, это управляющие ими математические законы. После длинных цепочек дедуктивных умозаключений наука сохраняет лишь небольшой, но жизненно важный контакт с чувственными восприятиями. Наука — это рационализованная фикция, и рационализована она математикой.

Выдающийся физик Генрих Герц (1857-1894), первым экспериментально подтвердивший предсказание Максвелла о том, что электромагнитные волны могут распространяться в пространстве, был настолько восхищен могуществом математики, что воскликнул: «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено».

Роль математики в изучении природы подчеркивал Джеймс Джинс (1877-1946). В книге «Загадочная Вселенная» он утверждал: «Самый важный факт состоит в том, что все картины природы, рисуемые наукой, которые только могут находиться в согласии с данными наблюдений, — картины математические… За пределы математических формул мы выходим на свой страх и риск». Физические понятия и механизмы подсказывают, как построить математическое описание явлений, после чего, как ни парадоксально, становится ясно, что вспомогательные физические средства не более чем фантазии и что только математические уравнения надежно следуют явлениям.

Аналогичную мысль Джинс высказал и в книге «Между физикой и философией». С помощью моделей или картин, доступных нашим органам чувств, человеческий разум не в силах постичь, как функционирует природа. Нам не дано понять, что представляют собой явления, и приходится ограничиваться описанием схем явлений на математическом языке. Урожай, пожинаемый физикой, всегда состоит из набора математических формул. Подлинная сущность материальной субстанции непознаваема.

1 ... 117 118 119 120 121 122 123 124 125 ... 140
На этой странице вы можете бесплатно читать книгу Математика. Утрата определенности. - Морис Клайн бесплатно.

Оставить комментарий