Шрифт:
Интервал:
Закладка:
Легко видеть, что каждое такое определение состоит лишь из конечного числа слов, а потому и из конечного числа букв алфавита. Поэтому мы можем ввести для таких словесных определений отношение порядка, считая одно определение предшествующим другому, если число букв, из которых состоит первое определение, меньше числа букв, составляющих второе определение; в тех же случаях, когда два определения состоят из одного и того же числа букв[11], одно из них считать предшествующим другому в обычном лексикографическом (алфавитном, словарном) порядке. Исходя из такого упорядочения можно теперь расположить все определения рассматриваемого вида в последовательность, сопоставив каждому из них единственное натуральное число — номер в этой же последовательности. Тогда самое короткое (и стоящее ранее других в алфавитном порядке) определение получит номер 1, следующее за ним в этом «словаре определений» — номер 2 и т. д.
Поскольку каждому определению теперь сопоставлено некоторое натуральное число, то может оказаться, что в некоторых случаях число, сопоставленное какому-нибудь определению, само будет обладать определяемым свойством.
Ситуация здесь в точности такова же, как в том случае, когда все слова в обычном орфографическом словаре делятся на два класса: односложные и многосложные; при этом слово «многосложное» само оказывается многосложным.
Пусть, например, определяющее выражение «не делиться ни на одно натуральное число, кроме самого себя и числа 1» оказалось в нашей последовательности на 17-м месте; ясно, что сопоставленное ему число 17 само подпадает под это определение. Пусть, с другой стороны, определяющее выражение «быть произведением некоторого натурального числа на то же самое число» получило номер 15; само число 15, очевидно, не является точным квадратом и потому данным свойством не обладает. Назовем числа, не обладающие свойствами, определяемыми предложениями, которым они соответствуют в описанной нами нумерации, ришаровыми. Таким образом, «x — ришарово число» — это просто сокращение выражения «x не обладает свойством, определяемым предложением, имеющим номер x в данной словарной последовательности определяющих предложений». (Скажем, число 17 из нашего первого примера не является ришаровым, а число 15 из второго примера — ришарово.)
Теперь мы уже можем сформулировать парадокс Ришара. Определяющее выражение для свойства быть ришаровым числом описывает, очевидно, некоторое арифметическое свойство натуральных чисел. Значит, само определяющее выражение входит в описанную выше последовательность определяющих выражений. Но тогда оно имеет в этой последовательности некоторый номер, который мы обозначим через n. Зададим теперь вполне естественный вопрос (немедленно приводящий к антиномии Ришара): является ли число n ришаровым? Читатель, конечно, сразу увидит, что противоречие теперь неизбежно. В самом деле, число n является ришаровым в том и только в том случае, если оно не обладает свойством, описываемым предложением, имеющим номер n, т. е. не обладает свойством быть ришаровым! Короче говоря, n ришарово тогда и только тогда, когда оно не ришарово, т. е. утверждение «n — ришарово число» является одновременно истинным и ложным.
Следует заметить, что это противоречие в известном смысле есть трюк, который нам удался благодаря не вполне точному соблюдению правил игры. Дело в том, что мы фактически использовали одно допущение, которое, однако, предпочли в явном виде не формулировать. Мы согласились рассматривать определения чисто арифметических свойств натуральных чисел, т. е. свойств, формулируемых в терминах таких понятий, как арифметическое сложение, умножение и т. п. Затем, однако, без дополнительных оговорок мы включили в ту же последовательность определений предложение, сформулированное посредством упоминания о некотором способе записи арифметических свойств. Строго говоря, определение свойства быть ришаровым числом просто не принадлежит к той последовательности определений, которая вначале описывалась, так как это определение использует такие метаматематические понятия, как номер буквы (или вообще знака) в некоторой последовательности. Таким образом, если мы будем четко различать утверждения самой арифметики (относящиеся к числам, а отнюдь не к записям, в которые такие числа входят, т. е. к равенствам, неравенствам и вообще формулам) и утверждения относительно арифметики (т. е. как раз утверждения об арифметических формулах), то мы не получим никакого парадокса Ришара.
Значит, сам по себе парадокс Ришара совсем не страшен. Но сама схема приводящего к нему рассуждения чрезвычайно поучительна и плодотворна. Речь идет о возможности «отображения» (или «перевода») метаматематических высказываний, относящихся к некоторой достаточно богатой формальной системе, в саму систему. Сама по себе идея «перевода» хорошо известна и играет важнейшую роль во многих областях математики. Такая идея лежит, например, в основе всей аналитической геометрии, где геометрические понятия переводятся в алгебраические (арифметические), так что вместо геометрических соотношений мы, по существу, имеем дело с алгебраическими. (Вспомните хотя бы обсуждавшееся в разделе 2 отображение геометрии в алгебру, использованное Гильбертом для доказательства относительной непротиворечивости его системы геометрических аксиом). Такие отображения-«переводы» играют большую роль и в физике, например, когда свойства электрического тока излагаются на языке гидродинамических явлений. Эта же идея перевода лежит в основе технического моделирования — идет ли речь об исследовании свойств модели самолета (или же самолета в натуральную величину) в аэродинамической трубе, или же об изучении в лабораторных условиях распределения каких-либо материальных масс с помощью аналоговой модели, где роль этих масс играют электрические заряды.
На идее отображения[12] основан так называемый принцип двойственности в проективной геометрии, состоящий в возможности взаимной замены в аксиомах (а значит, и в теоремах) проективной геометрии терминов «точка» и «прямая», в результате чего аксиомы переходят в аксиомы (соответственно теоремы — в теоремы). При одном из таких «переводов» слово «точка» можно считать «образом», слово «прямая» — «прообразом»; при обратном переводе роли меняются.
Самым существенным в обсуждаемой здесь идее «моделирования» является то, что абстрактная структура отношений, выполняемых для «предметов» какой- либо области, может быть изучена с помощью рассмотрения отношений, имеющих место между «предметами» (как правило, другой природы, чем «предметы» исходной области), принадлежащими совсем другой области. Именно эта идея «кодирования» лежит в основе доказательства Гёделя. Если некоторые сложные метаматематические высказывания о формализованной системе арифметики можно, как рассчитывает Гёдель, перевести (или «отобразить») в некоторые арифметические высказывания, принадлежащие самой системе, то это уже само по себе явится большим достижением в деле развития теоретико-доказательственной техники, так же, как исследовать алгебраические соотношения, представляющие (изображающие, кодирующие) некоторые геометрические соотношения между кривыми и поверхностями, гораздо удобнее, чем иметь дело с самими геометрическими соотношениями, — точно так же арифметические аналоги («образы») сложных логических соотношений оказываются в известном смысле более обозримыми и доступными для изучения, чем их логические «прообразы».
Использование идеи кодирования, как мы уже отмечали, лежит в основе знаменитой работы Гёделя. Следуя схеме рассуждения, очень близкой к той, что проводится в парадоксе Ришара (но усовершенствуя ее при этом таким образом, что она становится неуязвимой по отношению к сформулированным выше критическим заключениям), Гёдель показывает, что метаматематические высказывания об арифметическом формализованном исчислении можно представить посредством некоторых арифметических формул внутри исчисления. Как мы покажем подробнее в следующем разделе, ему удалось найти такой метод арифметического кодирования метаматематических высказываний, что для некоторой формулы, выражающей истинное метаматематическое утверждение о формулах арифметики, ни она сама, ни ее отрицание не доказуемы в формальной арифметике. Поскольку одна из этих формул, выражающая истинное арифметическое высказывание, не выводима из арифметических аксиом, то аксиомы образуют неполную систему. Предложенный Гёделем метод кодирования позволил ему также построить арифметическую формулу, соответствующую метаматематическому высказыванию «арифметическое исчисление непротиворечиво», и показать, что эта формула недоказуема в (этом же!) арифметическом исчислении. Отсюда следует, что упомянутое метаматематическое высказывание не может быть установлено без привлечения некоторых дополнительных дедуктивных средств, не представимых (т. е. не кодируемых, не переводимых) в самом арифметическом исчислении, так что если это высказывание и можно доказать, то уж заведомо с привлечением средств, непротиворечивость которых не менее сомнительна, нежели сама по себе непротиворечивость арифметики. Все важнейшие выводы были получены Гёделем с использованием придуманной им чрезвычайно остроумной системы числового кодирования, или, как мы будем далее говорить, нумерации.
- Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир - Стивен Строгац - Математика
- Том 12. Числа-основа гармонии. Музыка и математика - Хавьер Арбонес - Математика
- ВОЛШЕБНЫЙ ДВУРОГ - Сергей Бобров - Математика
- Том 11. Карты метро и нейронные сети. Теория графов - Клауди Альсина - Математика
- Вероятность как форма научного мышления - Виктор Лёвин - Математика
- Для юных математиков. Веселые задачи - Яков Перельман - Математика
- Введение в системную рискологию - Владимир Живетин - Математика
- Математические диктанты. Числовые примеры. Все типы задач. Устный счет. 3 класс - Елена Нефедова - Математика
- Путешествие по Карликании и Аль-Джебре - Владимир Левшин - Математика
- Рассказы о математике с примерами на языках Python и C (СИ) - Елисеев Дмитрий Сергеевич - Математика