Шрифт:
Интервал:
Закладка:
Функции нот и их свойства подробно рассматриваются в приложении I, в разделе «Музыка и символы музыкальной нотации».
Определение высоты
Высота звука (тон) обозначается положением головки ноты на линии нотного стана или в промежутке между линиями.
Однако этой информации недостаточно. Чтобы узнать абсолютную высоту звуков, нужен ключ.
Ключи
Из предыдущей главы вы знаете, что для определения скорости и ритма в начале партитуры указывается темп метронома и размер такта. В начале нотного стана также располагается ключ, который однозначно определяет высоту звуков.
Чаще всего используется ключ соль. Если этот ключ изображен в начале нотного стана так, как показано на рисунке, это означает, что все ноты, головка которых располагается на второй линии, соответствуют ноте соль.
Положение остальных нот уже известного вам музыкального строя будет таким: в первом промежутке между линиями будет располагаться нота фа, на первой линии — ми и так далее. Во втором промежутке будет находиться ля, на третьей линии — си, в третьем промежутке — до и так далее. Линия, определяющая ноту соль, проходит ровно через центральную точку, с которой рисуется ключ.
Также используется ключ фа в форме спирали. Он задает положение ноты фа на линии, где находится центральная точка спирали. Сверху и снизу от этой линии изображаются точки:
Ключ до — симметричный знак, осью симметрии которого является линия, соответствующая ноте до:
В зависимости от положения ключа изменяется высота звуков, соответствующих линиям и промежуткам нотного стана. Так, нота, изображенная в одном и том же месте нотного стана, будет звучать по-разному в зависимости от того, какой ключ используется.
* * *
СИММЕТРИЧНОСТЬ КЛАВИШ ПИАНИНО
Клавиши пианино имеют две оси симметрии: первая проходит по центру белой клавиши ре, вторая — по центру черной клавиши соль-диез. Так сложилось, что в европейской записи (ABCDEFG) в центре расположена нота D (ре), остальные шесть располагаются по обе стороны от соответствующей оси симметрии.
Теперь посмотрим, как располагаются тона и полутона гамм. Мажорной гаммой называется звукоряд из семи звуков, отделенных друг от друга следующей последовательностью тонов (Т) и полутонов (nТ):
Т-Т-nТ-Т-Т-nТ.
Мажорная гамма, в которой используются только белые клавиши, начинается с ноты до:
до, ре, ми, фа, соль, ля, си.
Минорной гаммой называется звукоряд из семи звуков, отделенных друг от друга следующей последовательностью тонов (Т) и полутонов (nТ):
Т-nТ-Т-Т-nТ-Т.
Минорная гамма, в которой используются только белые клавиши, начинается с ноты ля:
ля, си, до, ре, ми, фа, соль.
Именно в таком порядке расположены ноты вокруг клавиши ре, через которую проходит ось симметрии. Несложно заметить, что тона и полутона располагаются симметрично:
Между нотой соль и следующей нотой ля находится вторая ось симметрии. Очевидно, что интервалы будут симметричны также и относительно этой оси. Взглянув на расположение белых и черных клавиш пианино, можно заметить, что оси симметрии клавиш и тонов и полутонов соотносятся между собой. Так как мы используем равномерно темперированный строй из 12 равных полутонов, то в качестве центральной можно выбрать любую ноту, а остальные ноты будут располагаться симметрично по обе стороны от нее. В рассматриваемом нами случае к симметрии тонов и полутонов добавляется симметричное расположение клавиш пианино.
* * *
Посмотрим, как один и тот же звук (центральное до) изображается с помощью трех разных ключей:
На рисунке на предыдущей странице показано, как с помощью различных ключей изменяется значение ноты, расположенной в заданной позиции нотного стана. На этом рисунке показано, как один и тот же звук изображается с помощью трех разных ключей.
Изменение полутонов
Иногда необходимо изменить высоту отдельной ноты. Существует два знака, обозначающих повышение или понижение высоты звука на полутон: знак # (диез) означает повышение на один полутон, знак (бемоль) — понижение на один полутон. Существует третий знак, который отменяет действие диеза или бемоля для той ноты, перед которой он стоит. Этот знак называется бекар ().
Эти знаки располагаются на линии или промежутке между линиями нотного стана и изменяют все звуки, находящиеся справа от них до конца такта. Если знак диеза, бемоля или бекара указан в начале партитуры (между ключом и числовым обозначением размера такта), это означает, что будут изменены все ноты, находящиеся на одной линии с этим знаком.
Мелодическая кривая
Когда мы слушаем музыку, даже если мы не разбираемся в музыкальной нотации, мы часто представляем себе кривую или ломаную линию, состоящую из восходящих и нисходящих частей. Весьма вероятно, что эта кривая «движется» слева направо, в том же направлении, как и буквы на письме. Некоторые мелодии представляются нам в виде плавных кривых без больших перепадов, другие, напротив, имеют ярко выраженные перепады высот. Интересно, что эти линии в некотором роде соответствуют расположению нот на нотном стане. Рассмотрим пример партитуры и соединим головки нот непрерывной кривой, как в известной детской игре, где нужно соединять точки линиями:
Плавная мелодия и соответствующая ей кривая.
Если бы мы могли услышать мелодию, записанную в этой партитуре, то заметили бы, что она не имеет резких перепадов. Если для мелодии характерны резкие изменения высоты звуков, то ей будет соответствовать линия с резкими перепадами высоты, подобная той, что показана на рисунке:
Мелодия со значительными перепадами высоты звуков.
Геометрическо-музыкальные преобразованияВ гештальтпсихологии (термин «гештальт» не имеет однозначного перевода и может означать «форма», «структура» или «очертание») считается, что разум человека способен выбирать и группировать части целого, а также упорядочивать их, выделяя среди остальных. Этот процесс развивается во времени благодаря тому, что мы обладаем памятью, за счет чего способны видеть движение предметов при быстрой смене кадров и воспринимать музыкальные композиции. Предметом изучения гештальтпсихологии являются процессы восприятия. Были сформулированы определенные принципы, характерные для этих процессов. Согласно принципу замкнутости, наше восприятие имеет тенденцию завершать незамкнутые фигуры. Так, изображения, содержащие неполную информацию, например пейзажи импрессионистов, состоящие из множества разноцветных точек, с определенного расстояния кажутся реалистичными и правдоподобными. Это же происходит, когда мы смотрим кино: непрерывное движение, которое мы видим на экране, не более чем иллюзия, вызванная особенностями нашего восприятия. Законы гештальта применимы и в музыке. Они позволяют слушателю выявлять похожие звуки и мелодический рисунок, подобно тому как зритель кинофильма распознает похожие образы.
Многие композиторы при создании своих произведений умышленно использовали принципы и приемы геометрии. В некоторых случаях они наглядно проявляются при взгляде на партитуру, в других — находят непосредственное воплощение в звуках. Некоторые композиции имеют структуру, обладающую интересными геометрическими свойствами. Таковы, например, каноны. Сама их форма серьезно влияет на мелодию, из-за чего создание таких произведений становится вдвойне сложнее. Композитор не просто должен создать красивую мелодию — последовательность звуков должна подчиняться строгим математическим правилам. В некоторых композициях в качестве художественных приемов специально используются геометрические преобразования.
В этом разделе мы сравним различные геометрические преобразования и определенные сочетания звуков. Важно не забывать о фундаментальном различии: два измерения на плоскости имеют одинаковую размерность, два измерения нотного стана (высота звуков и время) — нет. Из-за этого музыкальные преобразования совершаются в разных измерениях по отдельности.
- Том 27. Поэзия чисел. Прекрасное и математика - Антонио Дуран - Математика
- Математика. Поиск истины. - Клайн Морис - Математика
- Математика. Поиск истины. - Морис Клайн - Математика
- Математика. Утрата определенности. - Морис Клайн - Математика
- Игра в имитацию. О шифрах, кодах и искусственном интеллекте - Алан Тьюринг - Прочая околокомпьтерная литература / Математика
- Быстрая математика: секреты устного счета - Билл Хэндли - Детская образовательная литература / Математика
- Дискретная математика без формул - Соловьев Александр - Математика
- О Исайе Канторе - Ефим Исаакович Зельманов - Биографии и Мемуары / Математика
- Великий треугольник, или Странствия, приключения и беседы двух филоматиков - Владимир Артурович Левшин - Детская образовательная литература / Математика / Прочее
- Задачник о смысле жизни - Илья Галахов - Прочая детская литература / Математика / Периодические издания