Рейтинговые книги
Читем онлайн Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 97 98 99 100 101 102 103 104 105 ... 153

8.2 Нетекстовые модели как инструмент верификации данных

Сколь бы совершенны ни были средства логического анализа достоверности данных, однако при условии, что стратегии дезинформации разработаны высококвалифицированными специалистами, располагающими столь же совершенными «электронными помощниками», реальной возможности верификации данных они не предоставляют.

При проведении анализа достоверности данных о состоянии или тенденциях изменения состояния систем в отраслях, не сопряженных с целенаправленным управлением параметрами процесса, либо имеющих систему жестких ограничений, обусловленных спецификой протекания базисных процессов, используются знания о наиболее общих закономерностях, определяющих поведение таких систем. Здесь широко применяются методы: теории вероятностей, математической статистики, формальной логики, теории измерений, а также законы, открытые в частных разделах естественнонаучных дисциплин.

Для таких систем, как правило, существует возможность синтеза модели, учитывающей диапазоны возможных значений и предельные динамические характеристики, на основе применения которой можно судить о достоверности/ошибочности данных, наличии искажений, вызванных теми или иными возмущающими воздействиями.

Ранее, рассматривая вопросы, связанные с моделированием систем, мы указывали, что модель является инструментом проверки гипотез. То есть, модель — это всегда инструмент верификации некоторой совокупности высказываний. Так что, вывод о возможности использования моделей для анализа достоверности сообщений является вполне естественным.

Очень часто, используя модели в реальной жизни, мы даже не задумываемся о том, что это действительно происходит. Многим людям, которым доводилось разрабатывать бизнес-планы, и в голову не приходило, что они занимались моделированием. Бухгалтер, составляющий балансовую отчетность, тоже редко задумывается о том, что он решает задачу оптимизации на достаточно сложной модели. Иными словами, модели — не есть нечто чуждое практике, вопрос лишь в том, сознаем ли мы факт их применения.

Допустим, что некая организация предлагает на сверхвыгодных условиях вложить деньги в «верное» дело. Зачастую наши сограждане, выяснив, сколько просят и что обещают, вкладывают и… теряют. Соображения их таковы: если просят немного, а обещают изрядно, то можно и дать — авось получится? Такой подход представляет собой подмену моделирования примитивным сравнением альтернатив, не учитывающим рисков, связанных с ошибочным выбором. Другое дело — взвешенный подход, связанный с оцениванием производственных затрат, спроса на продукцию, емкости рынка и иных характеристик социально-экономической системы. Объектом риска здесь, являются уже отнюдь не личные сбережения, а корпоративные финансы и ресурсы, соответственно требуется серьезное исследование, стоящее не малых средств. В последние годы в России появилось множество организаций, занятых проведением опросов общественного мнения, в нашу страну пришли и зарубежные фонды и институты, проводящие маркетинговые, социологические и иные исследования, например, Институт Гэллапа. Данные, получаемые в ходе подобных исследований, представляют высочайшую ценность, поскольку позволяют прибегнуть к аппарату математики, теории вероятности и математической статистики, то есть, воспользоваться инструментами повышения объективности выводов, вырваться из цикла эмоциональной вовлеченности и здраво оценить ситуацию.

Модели аналитические и имитационные, полунатурные и натурные, модели реального времени и допускающие временное масштабироване — значение их в том, что они являются инструментом «выращивания» нового знания, причем знания более «дешевого», нежели знание, полученное ценой полномасштабного эксперимента.

Проблема состоит в том, что затраты на синтез адекватной модели иногда оказываются сопоставимы с ценой ошибки. Поэтому, руководители часто отказываются от моделирования, забывая о том, что в случае ошибки средства просто теряются, в то время, как затраты на моделирование аккумулируются в модели. Модель-то остается и может быть использована вновь!

Проводя исследования в различных системах, сталкиваясь с разными по своей природе процессами, аналитик выбирает наиболее пригодный для решения задач анализа инструментарий исследования. Например, для моделирования результативности рекламной кампании, зачастую используется математический аппарат теории клеточных автоматов, аналогичный математический аппарат используется и в многоуровневом маркетинге (с линейной и нелинейной системой перераспределения прибыли). В других случаях оказывается эффективен математический аппарат теории линейного программирования. Однако единственное, ради чего используются все эти изощренные математические средства — это проверка истинности или ложности некоторого комплекса суждений.

Неслучайно в конце этой книги мы поместили приложение «Вариант организации процесса перспективного планирования на примере плана USAF-2025» — там наглядно показана процедура построения дерева целей и задач для дальнейшего перехода от качественных оценок к оценкам количественным. Как только мы получаем модель, использующую некоторую метрику, пригодную для сравнения альтернатив, мы получаем инструмент, обеспечивающий возможность аргументированной оценки утверждений на основе вычисления логических переменных.

9. Средства автоматизации ИАР

В самом начале первого раздела этой главы нами была приведена классификация средств автоматизации информационной работы. В соответствии с этой классификацией средства автоматизации делились на средства сбора, доставки, хранения и обработки данных, средства формирования и согласования тезауруса, средства интеграции и анализа данных, средства моделирования, средства интерпретации результатов, средства прогнозирования, средства синтеза целей управления, средства отображения данных, средства поддержки принятия решений и доведения управляющих воздействий.

Совершенствованию этих средств уделяется большое внимание: сегодня конкуренция в области создания средств поддержки ИАР превратилась из привычного соревнования фирм-разработчиков в гонку информационных технологий на государственном уровне. Безусловно, гонка вооружений также подстегивает развитие информационных технологий, однако практика показывает, что по поражающей мощи вооружений и точности средств доставки боевых зарядов государства, стремящиеся к мировому лидерству, пребывают примерно на одинаковом уровне. Сейчас дорога к лидерству не может быть расчищена исключительно боевым потенциалом вооруженных сил государства — этого недостаточно, да и слишком велика цена такого лидерства. Собственно, войны никогда не выигрывались исключительно оружием — это всегда было суровое испытание, в котором экономика, идеология, система управления государства доказывали свою жизнеспособность. Оружие массового поражения ненадолго поколебало уверенность в том, что это так, но когда оно перешло в категорию средств сдерживания нападения, все вернулось на круги своя. Теперь информационные технологии как инструмент повышения эффективности и оперативности процессов управления стали одним из основных элементов системы обеспечения экономической (и военной) безопасности государства, его граждан и субъектов экономической деятельности.

Говоря о средствах автоматизации и информатизации ИАР, следует выделять следующие классы:

— средства обеспечения ИАР, непосредственно не предназначенные для обработки и анализа информации (телекоммуникационное обеспечение ИАР, средства сбора, накопления и хранения данных, средства отображения информации);

— средства ведения ИАР, непосредственно предназначенные для обработки и анализа информации (различного рода пакеты статистической обработки данных, автоматизированные системы поддержки процессов моделирования сложных систем и анализа данных, лингвистические инструменты и т. д.).

В этой книге мы не будем рассматривать аппаратные и программные средства поддержки ИАР с такой степенью детализации, с какой они обычно рассматриваются в специальной литературе. Здесь нас интересуют не столько тонкости технической реализации, сколько идеи, заложенные в основу их функционирования, а также те положительные и отрицательные черты, которые эти средства способны привнести в ИАР.

Наиболее обширным и разнообразным по составу является класс средств обеспечения ИАР. Средства ведения ИАР отстают в своем развитии — оно и понятно: сложность аналитических процессов крайне высока…

9.1 Средства сбора информации

1 ... 97 98 99 100 101 102 103 104 105 ... 153
На этой странице вы можете бесплатно читать книгу Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов бесплатно.
Похожие на Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов книги

Оставить комментарий